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� Two broad approaches to dealing with extremes of a scalar time series

– block maxima

– exceedances over thresholds

� Block maxima traditionally used in applications, often modelled using
generalized extreme-value (GEV) distribution

� Threshold exceedances also widely used:

– simpler and more flexible, involve fitting the generalized Pareto distribution
(GPD) to threshold exceedances

– in principle allow more detailed modelling of events—in practice often just
retain ‘peaks’ of clusters of exceedances, hence Peaks Over Thresholds
(POT) analysis

� Use of POT originated in hydrology (‘partial duration series’) in early 1970s,
accompanying probability theory developed by Balkema, de Haan, Pickands in
mid-1970s, widespread statistical use since ∼ 1990
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� For a scalar random variable X, under mild conditions

P(X > x | X − bn > 0) →

(

1 + ξ
x− bn
an

)−1/ξ

+

, n → ∞,

where bn is a sequence of increasingly large thresholds. Equivalently,

– the conditional distribution of exceedances over a high threshold can be
approximated by a generalized Pareto distribution.

– the exceedances of a random sample above a high threshold can be modelled
by a Poisson process.

� These results form the basis of statistical methods for analysis of rare events,
applied as approximations to exceedances over some threshold u:

– we set bn = u, retain only the nu exceedances {Xj − u : Xj − u > 0},

– fit the GPD/Poisson process to the exceedances, and then

– extrapolate (crossing fingers . . . ).

� Here an ‘event’ is scalar: what if it is more complex?
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� Goal: estimate flood risk on Aare river basin up to 2050, taking into
account climate change.

� Probabilities needed for events on river network with annual probabilities
10−4 (Swiss nuclear power plants are on the riverbanks).

� Must assess combined flooding risk, using data including ∼ 80 river flow
time series of length at most 80 years, rainfall observations, climate
simulations, . . . ,

� Basic task: extrapolation (unreasonably?) far outside the range of any
observations.
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� We represent the phenomenon of interest by a stochastic process X defined on a
domain S and taking values in the space of continuous functions C(S), and
define an R-exceedance as an event

R(X) ≥ u,

where R is a scalar monotone increasing risk functional and u ≥ 0 is a
threshold.

� Examples of R(X):

– sups∈S X(s) for events that exceed u somewhere (anywhere) in S,

– X(s0) for risks at a specific location s0,

–
∑

t

∫

S
Xt(s) ds for the total size of the event over some period,

–
{∫

S
X(s)2 d(s)

}1/2
when the risk is determined by ‘energy’,

– . . .
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� Previous work:

– Opitz (2013, PhD thesis) ‘radial aggregation function’

– Ferreira and de Haan (2014, Bernoulli): propose sups∈S X(s), but in practice
X is observed only on a finite subset of S

– Dombry and Ribatet (2015, Statistics and its Interface): homogeneous ‘cost
functionals’

– de Fondeville and Davison (2018, Biometrika): precursor to the present work

� Lacunae:

– need wide range of functionals defined in terms of the original process, not on
some transformed version

– should to cover all types of tail behaviour, i.e., no restrictions on ξ

� Our goal: overcome these difficulties.

� For (lots of!) details, see de Fondeville and Davison (2022+, series B)
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� All defined on compact subset S of Rp

� ‘Standardized functions’:

– F denotes space of real-valued continuous functions on S, equipped
with norm ‖ · ‖;

– F+ ⊂ F denotes non-negative functions not everywhere zero.

� Transformed functions depend on scale and location functions a and b and
on shape parameter ξ, and so does their domain.

� Let ξ be a scalar shape parameter, let a ≡ a(s) > 0 and b ≡ b(s) be
continuous functions defined for s ∈ S, and define

Fξ,a,b =







F+ − (b− ξ−1a), ξ > 0,
F , ξ = 0,
(b− ξ−1a)−F+, ξ < 0.
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r(x) = sup
s∈[0,1] x(s) r(x) = x(0.1) r(x) =

∫
s∈[0,1] x(s)ds

Fig. 2. Realisations of generalized r-Pareto processes on S = [0, 1], with location function b

(heavy black line) and lower/upper bound b− ξ−1a of Fξ,a,b (heavy grey line). Left: realisations

x with shape parameter ξ > 0 and risk functional r(x) = sups∈S x(s), with the parts of the xs

below the threshold function b shown as dotted lines. Middle: realisations with ξ = 0 and risk

functional r(x) = x(0.1) representing evaluation at s = 0.1 (vertical line). Right: realisations x

with ξ < 0 and risk functional r(x) =
∫
s∈S

x(s)ds.
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� X is a stochastic process with sample paths in F for which there exist a real number ξ
and sequences {an}

∞

n=1 > 0 and {bn}
∞

n=1 of continuous functions such that there is
pointwise convergence to the GPD at each point of S:

lim
n→∞

nP

{
X(s)− bn(s)

an(s)
> x

}
=

{
(1 + ξx)−1/ξ

+
, ξ 6= 0,

exp (−x) , ξ = 0.

� We assume the existence of a boundedly finite non-zero measure Λ on the space of
non-negative and non-zero functions over S such that

limn→∞ nP

[{
1 + ξ

(
X − bn

an

)}1/ξ

+

∈ ·

]

, ξ 6= 0,

limn→∞ nP

{
exp

(
X − bn

an

)
∈ ·

}
, ξ = 0,





= Λ(·),

where {a}+ = max{a(s), 0} is a function of s; then we say that X ∈ GRV(ξ, an, bn,Λ).

� The limiting measure Λ is homogeneous of order −1.

� We also assume that there exist real numbers a′

n and a continuous strictly positive
function A on S such that an(s) ≈ a′

nA(s) for large n.
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� A risk function is valid for X if the R-exceedances of the limiting process have
finite positive measure. Holds in fairly wide generality.

� If u ≥ 0, the risk functional R is valid for X ∈ GRV (ξ, an, bn,Λ) and the
assumptions above hold, then

P

[

X − bn
R(an)

∈ ·

∣

∣

∣

∣

R

{

X − bn
R(an)

}

> u

]

→ P(P ∈ · ), n → ∞,

where P is a generalized R-Pareto process with tail index ξ, scale function A,
location function zero and measure Λ.

� For given ξ and positive function a ≡ a(s), let A = a/R(a) and let

AR =







{

y ∈ F+ : R

(

A
yξ − 1

ξ

)

> 0

}

, ξ 6= 0,

{y ∈ F+ : R (A log y) > 0} , ξ = 0,

contain possible sample paths for P .
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� The generalized R-Pareto process P associated to the measure Λ and tail index ξ
takes values in {x ∈ Fξ,a,b : R{(x− b)/R(a)} > 0} and is defined as

P =

{
a(Y ξ

R
− 1)/ξ + b, ξ 6= 0,

a log YR + b, ξ = 0,

where YR is a stochastic process on AR with probability measure Λ(·)/Λ(AR).

� Polar decomposition for YR is

YR

D
= RW

∣∣∣ R[Aξ−1{(RW )ξ − 1}] ≥ 0,

where R and W are independent, the scalar R is unit Pareto and W is a stochastic
process on S with values in S = {y ∈ F+ : ‖y‖1 = 1} with probability measure

σ0(·) =
Λ {y ∈ F+ : y/‖y‖1 ∈ · , ‖y‖1 ≥ 1 }

Λ {y ∈ F+ : ‖y‖1 ≥ 1}
,

where ‖ · ‖1 denotes the 1-norm on F+.

� Polar decomposition allows simulation of YR, even with fixed risk levels.
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Fig. 3. Simulated generalized r-Pareto processes with r(X) =
∫

S
X(s)ds = 100 for two semi-

variogram functions γ(h). Left: bounded power-exponential semi-variogram function. Right:

unbounded power variogram.
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� For any location s0 ∈ S, the generalized R-Pareto process has a GP
distribution above a sufficiently high threshold function u0 > 0:

P {P (s0) > r | P (s0) > u0} =

{

1 + ξ
r − u(s0)

σ(u0)

}

−1/ξ

, r > u0,

with σ(u0) = a(s0) + ξ{u(s0)− b(s0)}.

� If the risk functional is linear, the R-exceedance distribution of P is also
generalized Pareto:

P {R(P ) > r} =

{

1 + ξ
r −R(b)

R(a)

}

−1/ξ

, r > R(b).

� These are natural, and can be used for model-checking.
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Storm Daria
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Fig. 4. Maximum speed (ms−1) over the past 3 hours of the wind gusts sustained for at least

3s from ERA-Interim reanalysis during the peak of windstorm Daria, which swept over Europe

during January 1990.
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� Risk estimation usually based on historical catalogues: realistic but limited.

� EV modelling has numerous advantages, but must model complexity for risks of
interest.

� Base model on maximum speed of windgusts sustained for at least 3s every 3
hours for the period 1979 to 2016 from ERA-Interim reanalysis model.

� Storms are defined as an exceedance of the the spatial mean over a region with
dense human infrastructure (in green),

R(X)(t) = |EABLP|
−1

∫

EABLP

X(s, t)ds, t ∈ T,

containing Amsterdam, Brussels, London and Paris.

� Study period T is months October–March for 1979–2014.

� A time frame of 24h is centered on the maximum of the spatial mean.

� We use the 0.96 quantile as threshold, yielding 63 events with which to fit a
generalized r-Pareto process.
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Fig. 6. Declustered risk functional r(X)(t) = |EABLP|
−1

∫
EABLP

x(s, t) ds (ms−1), computed on

the ERA–Interim data set for each winter. r-exceedances above the empirical 0.96 quantile are

represented by red dots and windstorm starting dates from the XWS catalogue are represented

by blue vertical lines.
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� Generalized R-Pareto processes describe the limiting tail behaviour of
conditional R-exceedances.

� To apply them to the chosen exceedances in practice, we write

P (X ∈ ·) = P {R(X − bn) > 0} × P {X ∈ · | R(X − bn) > 0} ,

which we approximate by

P (X ∈ ·) ≈ P {R(X − bn) > 0} × P (P ∈ · ) .

� We use binary modelling for the first term, including dependence on
covariates . . .
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� Here we focus on the first term,

P (X ∈ ·) ≈ P {R(X − bn) > 0} × P (P ∈ · ) .

� Use logistic regression, with covariates NAO and a temperature anomaly:
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� For the second term,

P (X ∈ ·) ≈ P {R(X − bn) > 0} × P (P ∈ · ).

� We must estimate ξ, a and b: we use quantiles to obtain b̂ and then independence
likelihood to obtain ξ̂ = −0.150.01 and â:
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Fig. 5. Left: Study region E (coloured cells) for modelling extreme windstorms over Europe.

Mountainous regions were removed to avoid the systematic bias of the reanalysis model. The

green cells show the region EABLP containing Amsterdam, Brussels, London and Paris. Esti-

mated location and scale functions bn (middle) and an (right) (both in ms−1) of the generalized

r-Pareto process for modelling extreme windstorms over Europe.
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Fig. 8. Model assessment for the windstorm data. The lower six panels show QQ-plots of the

local tail distributions for the locations represented by the green cells in the map at the upper

left. The thresholds correspond to the local 0.675 quantiles of the r-exceedances, yielding 184
excesses for each cell. The upper right panel QQ-plot is for exceedances of r(x) above the

threshold un = 24 ms−1 modelled by a generalized Pareto distribution with scale â
′

n
and tail

index ξ̂ = −0.15. The blue dashed lines correspond to pointwise 95% confidence intervals.



ÉC OL E  POL Y T EC H N I Q U E
FÉ DÉRA LE  D E  L A U SAN N E

Dependence model

http://stat.epfl.ch slide 29

� Many possibilities . . .

� We model the angular component W using log-Gaussian random functions and
Whittle–Matérn semi-variogram

γ(s, s′, t, t′) = κ {1− ‖h‖νKν(‖h‖)} , κ, ν > 0,

where Kν is the modified Bessel function of the second kind of order ν(= 1), and the
‘distance’ between space-time coordinates (s, t) and s′, t′) is

‖h‖ = ‖h(s, s′, t, t′)‖ =

{∥∥∥∥
Ω(s′ − s)− V (t′ − t)

τs

∥∥∥∥
2

2

+

∣∣∣∣
t′ − t

τt

∣∣∣∣
2
}1/2

,

for s, s′ ∈ E and t, t′ ∈ [0, 24], with

– scale parameters τs, τt > 0 for the space and time dependence,

– a wind vector V ∈ R
2 that models the average displacement of the storm in a

three-hour period, and

– an anisotropy matrix

Ω =

[
cos η − sin η
a sin η a cos η

]
, η ∈

(
−
π

4
,
π

4

]
, a > 0,
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Semi-variogram parameter estimates obtained by least squares applied to the extremogram
and using the gradient score. The standard errors (subscripts) are obtained using a block
jackknife.

κ τs(km) τt(h) a η(◦) V1(km.h)−1 V2(km.h−1)

LS 3.5 614 23.8 1.41 −4.12 51.3 14.4
GS 2.850.01 33711.6 9.62.8 1.320.01 21.20.1 50.42.9 12.51.7

� Broad agreement on dependence strength at long distances, not on anisotropy:

– least squares fits long-range north-east anisotropy

– gradient score fits short-range south-east anisotropy

� Spatial variation of dependence should in principle be modelled.

� Similar estimates of wind vector.
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Empirical Least Squares Gradient Score
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Fig. 9. Extremograms as functions of distance (km): empirical estimates (left), fitted values ob-

tained using the parameters from least squares (middle) and gradient scoring (right) estimates.

Each row represents a 3-hour time step.
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Fig. 10. Simulated maximum speed (ms−1) over the past 3h hours of wind gusts sustained for

at least 3s. The storm has an intensity r(x) = 29.1 ms−1.
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� Peaks over threshold inference applies to complex settings.

� Need suitably defined risk functionals, many possibilities.

� Can fit such models using (more or less) standard tools

� Model-checking possible, using simulation from fitted models and other
techniques.

� For climate change applications, would include causal covariates, maybe fitted
using ML techniques?

� Promising general approach for complex problems, but has limitations:

– common ξ throughout S,

– scaling functions should satisfy an(s) ≈ a′nA(s) for large n,

– limiting processes are asymptotically dependent (might over-estimate rsome
risks),

– use of parametric models not sufficiently flexible?
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elliptiques. Ph.D. thesis, Université de Montpellier II.
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