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Prediction of extreme conditional

quantiles



Generalized Pareto distribution

River discharge (m3/ s)
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P(Y > y)

= P(Y > u)× P(Y > y | Y > u)

≈ P(Y > u)× (1− Hσ,γ(y − u))

= P(Y > u)×
(

1 + γ
y − u

σ

)−1/γ

where Hσ,γ is the cdf of the GPD with scale and shape σ > 0 and γ ∈ R.
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Estimation

• Consider i.i.d. data Y1, . . . ,Yn and estimate empirically the quantile

u = Q̂(τ0) for an intermediate quantile level τ0 < 1.

• Define the exceedances above the threshold as

Zi =
(
Yi − Q̂(τ0)

)
+
.

• The likelihood of the GPD model with parameters θ = (σ, γ) is

`Zi (θ) = −
[

(1 + 1/γ) log

(
1 + γ

Zi

σ

)
+ log σ

]
IZi>0.

Estimate the parameters by maximum likelihood

θ̂ = argmax
θ

n∑
i=1

`Zi (θ).
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Extreme quantile estimation

• Inverting the cdf Hσ̂,γ̂ of the GPD provides an approximation of the

quantile for probability level τ > τ0 by

Q̂(τ) = Q̂(τ0) + σ̂

(
1−τ
1−τ0

)−γ̂
− 1

γ̂
.
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Extreme quantile regression

τ0 = 0.8 

τ = 0.9995 

0

5

10

15

20

−1.0 −0.5 0.0 0.5 1.0
X1

Y

Scale shift example with Student’s t-distribution (dof=4) for Y ; n = 2000.
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Extreme quantile regression

• For i.i.d. data (X1,Y1), . . . , (Xn,Yn) where Xi ∈ Rd and Yi ∈ R, the goal

is to predict the conditional quantile at level τ ∈ (0, 1)

Qx(τ) = F−1
Y (τ | X = x).

• There are different scenarios depending on the quantile level τ = τn:

• τn ≡ τ0 < 1 (classical case)

• τn → 1, and n(1− τn)→∞ (intermediate case)

• τn → 1, and n(1− τn)→ 0 (extreme case)

• Classical methods for quantile regression only work well in the case of fixed

τn ≡ τ0 < 1.

• Methods from extreme value theory are not flexible enough (Chernozhukov

[2005], Chavez-Demoulin & Davison [2005]) or do not generalize well into

higher dimensions (Daouia, Gardes & Girard [2013]).

• Goal: Develop a new method for extreme quantile regression that works

well with high-dimensional and complex data.
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Quantile regression

• Consider independent data (X1,Y1), . . . , (Xn,Yn) where Xi ∈ Rd ,Yi ∈ R.

• The goal is to predict the conditional quantile at level τ ∈ (0, 1)

Qx(τ) = F−1
Y (τ | X = x).

• Most approaches for quantile estimation rely on the property

Qx(τ) = argmin
q

E [ρτ (Y − q) | X = x] ,

where ρτ (u) = (τ − I{u < 0})u is the quantile check function.

Without parametric assumption, a pointwise estimator is

Q̂x(τ) = argmin
q

n∑
i=1

wi (x)ρτ (Yi − q).

where w1, . . . ,wn is a sequence of localizing weight functions.

6



Quantile regression

• Consider independent data (X1,Y1), . . . , (Xn,Yn) where Xi ∈ Rd ,Yi ∈ R.

• The goal is to predict the conditional quantile at level τ ∈ (0, 1)

Qx(τ) = F−1
Y (τ | X = x).

• Most approaches for quantile estimation rely on the property

Qx(τ) = argmin
q

E [ρτ (Y − q) | X = x] ,

where ρτ (u) = (τ − I{u < 0})u is the quantile check function.

Without parametric assumption, a pointwise estimator is

Q̂x(τ) = argmin
q

n∑
i=1

wi (x)ρτ (Yi − q).

where w1, . . . ,wn is a sequence of localizing weight functions.

6



Quantile regression

• Consider independent data (X1,Y1), . . . , (Xn,Yn) where Xi ∈ Rd ,Yi ∈ R.

• The goal is to predict the conditional quantile at level τ ∈ (0, 1)

Qx(τ) = F−1
Y (τ | X = x).

• Most approaches for quantile estimation rely on the property

Qx(τ) = argmin
q

E [ρτ (Y − q) | X = x] ,

where ρτ (u) = (τ − I{u < 0})u is the quantile check function.

Without parametric assumption, a pointwise estimator is

Q̂x(τ) = argmin
q

n∑
i=1

wi (x)ρτ (Yi − q).

where w1, . . . ,wn is a sequence of localizing weight functions.

6



Quantile regression

• Consider independent data (X1,Y1), . . . , (Xn,Yn) where Xi ∈ Rd ,Yi ∈ R.

• The goal is to predict the conditional quantile at level τ ∈ (0, 1)

Qx(τ) = F−1
Y (τ | X = x).

• Most approaches for quantile estimation rely on the property

Qx(τ) = argmin
q

E [ρτ (Y − q) | X = x] ,

where ρτ (u) = (τ − I{u < 0})u is the quantile check function.

Without parametric assumption, a pointwise estimator is

Q̂x(τ) = argmin
q

n∑
i=1

wi (x)ρτ (Yi − q).

where w1, . . . ,wn is a sequence of localizing weight functions.

6



Extreme quantile regression

• Assume the

conditional

GPD model

(Y − u

(x)

| Y > u

(x),X = x

) ∼ Hσ

(x)

,γ

(x)

• Let τ0 be an intermediate quantile level, and u(x) = Q̂x(τ0) be an estimate

of the conditional τ0 quantile of Y | X = x; it can be estimated with

classical methods, e.g., a quantile random forest.

• For a possibly extreme level τ > τ0 we can estimate

Q̂x(τ) = Q̂x(τ0) + σ̂(x)

(
1−τ
1−τ0

)−γ̂(x)

− 1

γ̂(x)
,

where θ̂(x) = (σ̂(x), γ̂(x)) is an estimate of the conditional GPD

parameters.

• The triple (Q̂x(τ0), σ̂(x), γ̂(x)) provides a model for the tail of Y | X = x.
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Extreme quantile regression

Two methods to estimate the GPD parameters θ̂(x) = (σ̂(x), γ̂(x)), both

maximize a localized likelihood:

θ̂(x) = argmax
θ

n∑
i=1

wi (x)`Zi (θ),

where Zi are the conditional exceedances.

• Extremal gradient boosting (GBEX): The weights wi (x) are obtained

through gradient boosting.

Velthoen, J., Dombry, C., Cai, J.-J., and Engelke, S. (2021).

Gradient boosting for extreme quantile regression.

https://arxiv.org/abs/2103.00808

• Extremal random forest (ERF): The weights wi (x) are obtained through

a generalized random forest Athey, Tibshirani & Wager [2019].

Gnecco, N., Terefe, E.M., and Engelke, S. (2022+).

Extremal Random Forests. Preprint.

9



Extreme quantile regression

Two methods to estimate the GPD parameters θ̂(x) = (σ̂(x), γ̂(x)), both

maximize a localized likelihood:

θ̂(x) = argmax
θ

n∑
i=1

wi (x)`Zi (θ),

where Zi are the conditional exceedances.

• Extremal gradient boosting (GBEX): The weights wi (x) are obtained

through gradient boosting.

Velthoen, J., Dombry, C., Cai, J.-J., and Engelke, S. (2021).

Gradient boosting for extreme quantile regression.

https://arxiv.org/abs/2103.00808

• Extremal random forest (ERF): The weights wi (x) are obtained through

a generalized random forest Athey, Tibshirani & Wager [2019].

Gnecco, N., Terefe, E.M., and Engelke, S. (2022+).

Extremal Random Forests. Preprint.

9



Extreme quantile regression

Two methods to estimate the GPD parameters θ̂(x) = (σ̂(x), γ̂(x)), both

maximize a localized likelihood:

θ̂(x) = argmax
θ

n∑
i=1

wi (x)`Zi (θ),

where Zi are the conditional exceedances.

• Extremal gradient boosting (GBEX): The weights wi (x) are obtained

through gradient boosting.

Velthoen, J., Dombry, C., Cai, J.-J., and Engelke, S. (2021).

Gradient boosting for extreme quantile regression.

https://arxiv.org/abs/2103.00808

• Extremal random forest (ERF): The weights wi (x) are obtained through

a generalized random forest Athey, Tibshirani & Wager [2019].

Gnecco, N., Terefe, E.M., and Engelke, S. (2022+).

Extremal Random Forests. Preprint.

9



Extreme quantile regression

τ0 = 0.8 

τ = 0.9995 

●

●

●

● ●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●
● ●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●
●

●
●

●
●

●

●

●

●●

●

● ●

●

●
●

●

●

●

● ●

●
●

●
●

●

●

●
●

● ●

●

●
●

●
●

●●
●

●

●

●

●

● ●●
●

●

●
●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●
●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●● ● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●●
●

●

●

●

●
●

●

●
●

● ●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

0

5

10

15

20

−1.0 −0.5 0.0 0.5 1.0
X1

Y

Scale shift example with Student’s t-distribution (dof=4) for Y ; n = 2000.

10



Simulation setup

Setup from [Athey, Tibshirani & Wager, 2019]:

• Different dimensions d and sample size n = 2000.

• X = (X1, . . . ,Xd) uniform distributed on [−1, 1]d .

• Y follows a Student’s t-distribution with dof = 4 and scale

scale(x) = 1 + I(x1 > 0),

that is γ(x) ≡ 1/4 and σ(x) = σ(τ0)(1 + I(x1 > 0)).

• Intermediate threshold τ0 = 0.8 and extreme probability levels of interest

τ = 0.99, 0.995, 0.999 and 0.9995.

• Evaluation metric is the integrated squared error (ISE) for level τ

ISE =

∫
[−1,1]d

(
Q̂x(τ)− Qx(τ)

)2

dx.

• Repeat experiment many times and compute the average of the ISE:

MISE = E(ISE).
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Results
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GBEX: variable importance
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Precipitation forecasts and statistical post-processing

Data

• Consider ensembles of numerical weather predictions for precipitation

forecasts from the European Centre for Medium-Range Weather Forecasts.

• We have M = 51 ensembles and consider a lead time of 36 hours.

• Statistical post-processing is a second step to correct these forecasts for

systematic biases and over- or underdispersion.

• We have 9 years of daily data at 7 locations in the Netherlands.

• We apply our gbex at each location with predictors from all locations:

X1, . . . ,X7 = ensemble mean from all locations

X8, . . . ,X14 = ensemble st. dev. from all locations

X15, . . . ,X21 = ensemble upper order statistics

X22 = sin(2πday/365)

X23 = cos(2πday/365)
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Variable importance
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Partial dependence plots
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evtGAN: combining EVT and GANs



Climate model data

• We use 2000 years of large ensemble simulations with the EC-Earth global

climate model (v2.3, Hazeleger et al., 2012).

• Present-day climate conditions, stationary in time; see van der Wiel et al.

(2019) for details.

• Data at d = 18× 22 grid points over western Europe.

• We consider annual maxima of precipitation and temperature, giving us

n = 2000 observations of a random vector Z = (Z1, . . . ,Zd).

Goal: Realistic simulations of Z for stress testing and extreme event simulation.

Here we use ntrain = 50 years for training, and ntest = 1950 for evaluation.
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Marginal GEV parameters
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d) e) f)

Figure 1: GEV parameters for temperature (a-c) and precipitation (d-f): mean

parameter µ (left), scale parameter σ (center) and shape parameter ξ (right).
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Two approaches

Classical EVT approach

• Spatial extreme value theory provides statistical models for Z , e.g., a

spatial max-stable model [Davison and Gholamrezaee, 2012].

• If the region is very large and heterogeneous, such models may not be
flexible enough, because of:

• spatial non-stationarities;

• asymptotic independence between some stations;

• etc.

Our ML approach

• Generative Adversarial Networks (GANs) [Goodfellow et al., 2014] are a

flexible way of learning and sampling from a multivariate distribution Z .

• They are usually used to sample from image data using convolutional

neural networks.

• We can treat our spatial climatological data Z as an image.
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GANs for extremes

• GANs are trained on the bulk of the distribution.

• There are two main challenges concerning extremes:

• accurate extrapolation of the marginal distributions;

• accurate modeling of the extremal dependence structure.

• If the input noise is bounded/light-tailed, then the generator output is

bounded/light-tailed [Wiese et al., 2019].

• Huster et al. (2021) and Allouche et al. (2021) develop GANs that can

generate heavy-tailed output.

• Bhatia et al. (2020) propose a conditional GAN for importance sampling

of extreme events.

Our evtGAN is copula approach where marginals use EVT approximations and

dependence the structure is generated by the GAN.
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The evtGAN algorithm

Input: Annual maxima Zi = (Zi1, . . . ,Zid), i = 1, . . . , n.

1. Fit a GEV distribution Ĝj to the jth marginal with parameters (µ̂j , σ̂j , ξ̂j).

2. Normalize empirically to a std uniform distribution to obtain pseudo

observations

Ui = (F̂1(Zi1), . . . , F̂d(Zid)), i = 1, . . . , n,

where F̂j is the empirical distribution function of the Z1j , . . . ,Znj .

3. Train a GAN G on the normalized data U1, . . . ,Un.

4. Generate n∗ new data points U∗
1 , . . . ,U

∗
n∗ from G with uniform margins.

5. Normalize back to the scale of the original observations

Z∗
i = (Ĝ−1

1 (U∗
i1), . . . , Ĝ−1

d (U∗
id)), i = 1, . . . , n∗.

Output: Set of new generated observations Z∗
i = (Zi1, . . . ,Z

∗
id), i = 1, . . . , n∗.
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Marginal GEV parameters
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Figure 2: GEV parameters for temperature (a-c) and precipitation (d-f): mean

parameter µ (left), scale parameter σ (center) and shape parameter ξ (right).
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Bivariate samples of temperature
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Bivariate samples of precipitation
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Extremal correlation plots

a)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

M
o
d
el

ex
tr
em

al
co
rr
el
at
io
n

Train set

b)

evtGAN

c)

Brown–Resnick

d)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

e)

Test extremal correlation

0.0 0.2 0.4 0.6 0.8 1.0

f)

0.0 0.2 0.4 0.6 0.8 1.0

26



Boulaguiem, Y., Zscheischler, J., Vignotto, E., van der Wiel, K.

and Engelke, S. (2021).

Modelling and simulating spatial extremes by combining

extreme value theory with generative adversarial networks.

https://arxiv.org/abs/2111.00267
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Thank You!
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A., Wyser, K., Semmler, T., Yang, S., Van den Hurk, B., et al. (2012).

EC-Earth v2. 2: description and validation of a new seamless earth

system prediction model.

Climate dynamics, 39(11):2611–2629.

Huster, T., Cohen, J. E. J., Lin, Z., Chan, K., Kamhoua, C., Leslie, N.,

Chiang, C.-Y. J., and Sekar, V. (2021).

Pareto gan: Extending the representational power of gans to

heavy-tailed distributions.

Available from http://arxiv.org/abs/2101.09113.

30



References IV

Meinshausen, N. (2006).

Quantile regression forests.

Journal of Machine Learning Research, 7(Jun):983–999.

Van der Wiel, K., Wanders, N., Selten, F., and Bierkens, M. (2019).

Added value of large ensemble simulations for assessing extreme river

discharge in a 2 C warmer world.

Geophysical Research Letters, 46(4):2093–2102.

Velthoen, J., Dombry, C., Cai, J.-J., and Engelke, S. (2021).

Gradient boosting for extreme quantile regression.

arXiv preprint arXiv:2103.00808.

Wiese, M., Knobloch, R., and Korn, R. (2019).

Copula & marginal flows: Disentangling the marginal from its joint.

31


	Prediction of extreme conditional quantiles
	evtGAN: combining EVT and GANs

