Machine learning methods for extremes

Sebastian Engelke
www.sengelke.com

Jointly with
Jasper Velthoen, Clément Dombry, Juan-Juan Cai, Edossa Merga Terefe, Nicola Gnecco, Younes Boulaguiem, Jakob Zscheischler, Edoardo Vignotto, Karin van der Wiel.

Weather Extremes and Climate Change, Paris
January 19, 2022
Prediction of extreme conditional quantiles
Generalized Pareto distribution

\[\mathbb{P}(Y > y) \]
Generalized Pareto distribution

\[
\mathbb{P}(Y > y) = \mathbb{P}(Y > u) \times \mathbb{P}(Y > y \mid Y > u)
\]
Generalized Pareto distribution

\[
P(Y > y) = P(Y > u) \times P(Y > y \mid Y > u)
\approx P(Y > u) \times (1 - H_{\sigma, \gamma}(y - u))
\]

where \(H_{\sigma, \gamma} \) is the cdf of the GPD with scale and shape \(\sigma > 0 \) and \(\gamma \in \mathbb{R} \).
Generalized Pareto distribution

\[P(Y > y) = P(Y > u) \times P(Y > y \mid Y > u) \]
\[\approx P(Y > u) \times \left(1 - H_{\sigma,\gamma}(y - u)\right) \]
\[= P(Y > u) \times \left(1 + \gamma \frac{y - u}{\sigma}\right)^{-1/\gamma} \]

where \(H_{\sigma,\gamma} \) is the cdf of the GPD with scale and shape \(\sigma > 0 \) and \(\gamma \in \mathbb{R} \).
Consider i.i.d. data Y_1, \ldots, Y_n and estimate empirically the quantile $u = \hat{Q}(\tau_0)$ for an intermediate quantile level $\tau_0 < 1$.

Define the exceedances above the threshold as

$$Z_i = \left(Y_i - \hat{Q}(\tau_0) \right)_+.$$
Consider i.i.d. data \(Y_1, \ldots, Y_n \) and estimate empirically the quantile \(u = \hat{Q}(\tau_0) \) for an intermediate quantile level \(\tau_0 < 1 \).

Define the exceedances above the threshold as

\[
Z_i = \left(Y_i - \hat{Q}(\tau_0) \right)_+.
\]

The likelihood of the GPD model with parameters \(\theta = (\sigma, \gamma) \) is

\[
\ell_{Z_i}(\theta) = - \left[(1 + 1/\gamma) \log \left(1 + \gamma \frac{Z_i}{\sigma} \right) + \log \sigma \right] I_{Z_i > 0}.
\]

Estimate the parameters by maximum likelihood

\[
\hat{\theta} = \arg\max_{\theta} \sum_{i=1}^{n} \ell_{Z_i}(\theta).
\]
Inverting the cdf $H_{\hat{\sigma}, \hat{\gamma}}$ of the GPD provides an approximation of the quantile for probability level $\tau > \tau_0$ by

$$\hat{Q}(\tau) = \hat{Q}(\tau_0) + \hat{\sigma} \left(\frac{1-\tau}{1-\tau_0} \right)^{-\hat{\gamma}} - 1.$$
Extreme quantile regression

Scale shift example with Student’s t-distribution (dof=4) for Y; $n = 2000$.
Extreme quantile regression

- For i.i.d. data \((X_1, Y_1), \ldots, (X_n, Y_n)\) where \(X_i \in \mathbb{R}^d\) and \(Y_i \in \mathbb{R}\), the goal is to predict the conditional quantile at level \(\tau \in (0, 1)\)

\[Q_x(\tau) = F_Y^{-1}(\tau \mid X = x).\]
Extreme quantile regression

- For i.i.d. data \((X_1, Y_1), \ldots, (X_n, Y_n)\) where \(X_i \in \mathbb{R}^d\) and \(Y_i \in \mathbb{R}\), the goal is to predict the conditional quantile at level \(\tau \in (0, 1)\)

\[
Q_X(\tau) = F_Y^{-1}(\tau \mid X = x).
\]

- There are different scenarios depending on the quantile level \(\tau = \tau_n\):
 - \(\tau_n \equiv \tau_0 < 1\) (classical case)
 - \(\tau_n \to 1\), and \(n(1 - \tau_n) \to \infty\) (intermediate case)
 - \(\tau_n \to 1\), and \(n(1 - \tau_n) \to 0\) (extreme case)

Classical methods for quantile regression only work well in the case of fixed \(\tau_n \equiv \tau_0 < 1\).

Methods from extreme value theory are not flexible enough (Chernozhukov [2005], Chavez-Demoulin & Davison [2005]) or do not generalize well into higher dimensions (Daouia, Gardes & Girard [2013]).

Goal: Develop a new method for extreme quantile regression that works well with high-dimensional and complex data.
Extreme quantile regression

- For i.i.d. data \((X_1, Y_1), \ldots, (X_n, Y_n) \) where \(X_i \in \mathbb{R}^d \) and \(Y_i \in \mathbb{R} \), the goal is to predict the conditional quantile at level \(\tau \in (0, 1) \)

\[
Q_x(\tau) = F_Y^{-1}(\tau \mid X = x).
\]

- There are different scenarios depending on the quantile level \(\tau = \tau_n \):
 - \(\tau_n \equiv \tau_0 < 1 \) (classical case)
 - \(\tau_n \to 1, \) and \(n(1 - \tau_n) \to \infty \) (intermediate case)
 - \(\tau_n \to 1, \) and \(n(1 - \tau_n) \to 0 \) (extreme case)

- Classical methods for quantile regression only work well in the case of fixed \(\tau_n \equiv \tau_0 < 1 \).
Extreme quantile regression

- For i.i.d. data \((X_1, Y_1), \ldots, (X_n, Y_n)\) where \(X_i \in \mathbb{R}^d\) and \(Y_i \in \mathbb{R}\), the goal is to predict the conditional quantile at level \(\tau \in (0, 1)\)

\[
Q_x(\tau) = F_Y^{-1}(\tau \mid X = x).
\]

- There are different scenarios depending on the quantile level \(\tau = \tau_n\):
 - \(\tau_n \equiv \tau_0 < 1\) (classical case)
 - \(\tau_n \rightarrow 1\), and \(n(1 - \tau_n) \rightarrow \infty\) (intermediate case)
 - \(\tau_n \rightarrow 1\), and \(n(1 - \tau_n) \rightarrow 0\) (extreme case)

- Classical methods for quantile regression only work well in the case of fixed \(\tau_n \equiv \tau_0 < 1\).

- Methods from extreme value theory are not flexible enough (Chernozhukov [2005], Chavez-Demoulin & Davison [2005]) or do not generalize well into higher dimensions (Daouia, Gardes & Girard [2013]).
Extreme quantile regression

- For i.i.d. data \((X_1, Y_1), \ldots, (X_n, Y_n)\) where \(X_i \in \mathbb{R}^d\) and \(Y_i \in \mathbb{R}\), the goal is to predict the conditional quantile at level \(\tau \in (0, 1)\)

\[Q_x(\tau) = F_Y^{-1}(\tau \mid X = x).\]

- There are different scenarios depending on the quantile level \(\tau = \tau_n\):
 - \(\tau_n \equiv \tau_0 < 1\) (classical case)
 - \(\tau_n \to 1, \quad n(1 - \tau_n) \to \infty\) (intermediate case)
 - \(\tau_n \to 1, \quad n(1 - \tau_n) \to 0\) (extreme case)

- Classical methods for quantile regression only work well in the case of fixed \(\tau_n \equiv \tau_0 < 1\).

- Methods from extreme value theory are not flexible enough (Chernozhukov [2005], Chavez-Demoulin & Davison [2005]) or do not generalize well into higher dimensions (Daouia, Gardes & Girard [2013]).

- Goal: Develop a new method for extreme quantile regression that works well with high-dimensional and complex data.
Quantile regression

- Consider independent data \((X_1, Y_1), \ldots, (X_n, Y_n)\) where \(X_i \in \mathbb{R}^d\), \(Y_i \in \mathbb{R}\).
Quantile regression

- Consider independent data \((X_1, Y_1), \ldots, (X_n, Y_n)\) where \(X_i \in \mathbb{R}^d, Y_i \in \mathbb{R}\).
- The goal is to predict the conditional quantile at level \(\tau \in (0, 1)\)

\[
Q_x(\tau) = F_Y^{-1}(\tau \mid X = x).
\]
Quantile regression

- Consider independent data \((X_1, Y_1), \ldots, (X_n, Y_n)\) where \(X_i \in \mathbb{R}^d, Y_i \in \mathbb{R}\).
- The goal is to predict the conditional quantile at level \(\tau \in (0, 1)\)
 \[Q_x(\tau) = F_Y^{-1}(\tau | X = x). \]
- Most approaches for quantile estimation rely on the property
 \[Q_x(\tau) = \arg\min_q \mathbb{E} [\rho_\tau(Y - q) | X = x] , \]
 where \(\rho_\tau(u) = (\tau - \mathbb{1}\{u < 0\})u\) is the quantile check function.
Consider independent data \((X_1, Y_1), \ldots, (X_n, Y_n)\) where \(X_i \in \mathbb{R}^d, Y_i \in \mathbb{R}\).

The goal is to predict the conditional quantile at level \(\tau \in (0, 1)\)

\[
Q_x(\tau) = F_{Y | X = x}^{-1}(\tau | X = x).
\]

Most approaches for quantile estimation rely on the property

\[
Q_x(\tau) = \arg\min_q \mathbb{E}[\rho_\tau(Y - q) | X = x],
\]

where \(\rho_\tau(u) = (\tau - \mathbb{I}\{u < 0\})u\) is the quantile check function.

Without parametric assumption, a pointwise estimator is

\[
\hat{Q}_x(\tau) = \arg\min_q \sum_{i=1}^n w_i(x) \rho_\tau(Y_i - q).
\]

where \(w_1, \ldots, w_n\) is a sequence of localizing weight functions.
Extreme quantile regression

- Assume the GPD model

\[(Y - u \mid Y > u) \sim H_{\sigma, \gamma}\]
Extreme quantile regression

- Assume the conditional GPD model

\[(Y - u(x) \mid Y > u(x), X = x) \sim H_{\sigma(x), \gamma(x)}\]
• Assume the conditional GPD model

\[(Y - u(x) \mid Y > u(x), X = x) \sim H_{\sigma(x), \gamma(x)}\]

• Let \(\tau_0\) be an intermediate quantile level, and \(u(x) = \hat{Q}_x(\tau_0)\) be an estimate of the conditional \(\tau_0\) quantile of \(Y \mid X = x\); it can be estimated with classical methods, e.g., a quantile random forest.
Extreme quantile regression

- Assume the conditional GPD model

\[(Y - u(x) \mid Y > u(x), X = x) \sim H_{\sigma(x), \gamma(x)}\]

- Let \(\tau_0\) be an intermediate quantile level, and \(u(x) = \hat{Q}_x(\tau_0)\) be an estimate of the conditional \(\tau_0\) quantile of \(Y \mid X = x\); it can be estimated with classical methods, e.g., a quantile random forest.

- For a possibly extreme level \(\tau > \tau_0\) we can estimate

\[
\hat{Q}_x(\tau) = \hat{Q}_x(\tau_0) + \hat{\sigma}(x) \left(\frac{1 - \tau}{1 - \tau_0} \right)^{-\hat{\gamma}(x)} - 1,
\]

where \(\hat{\theta}(x) = (\hat{\sigma}(x), \hat{\gamma}(x))\) is an estimate of the conditional GPD parameters.
Extreme quantile regression

• Assume the conditional GPD model

\[(Y - u(x) \mid Y > u(x), X = x) \sim H_{\sigma(x), \gamma(x)}\]

• Let \(\tau_0\) be an intermediate quantile level, and \(u(x) = \hat{Q}_x(\tau_0)\) be an estimate of the conditional \(\tau_0\) quantile of \(Y \mid X = x\); it can be estimated with classical methods, e.g., a quantile random forest.

• For a possibly extreme level \(\tau > \tau_0\) we can estimate

\[
\hat{Q}_x(\tau) = \hat{Q}_x(\tau_0) + \hat{\sigma}(x) \frac{1 - \tau}{1 - \tau_0} \frac{1}{\hat{\gamma}(x)} - 1
\]

where \(\hat{\theta}(x) = (\hat{\sigma}(x), \hat{\gamma}(x))\) is an estimate of the conditional GPD parameters.

• The triple \((\hat{Q}_x(\tau_0), \hat{\sigma}(x), \hat{\gamma}(x))\) provides a model for the tail of \(Y \mid X = x\).
Scale shift example with Student’s t-distribution (dof=4) for Y; $n = 2000$.
Extreme quantile regression

Scale shift example with Student’s t-distribution (dof=4) for Y; $n = 2000$.
Extreme quantile regression

Two methods to estimate the GPD parameters $\hat{\theta}(x) = (\hat{\sigma}(x), \hat{\gamma}(x))$, both maximize a localized likelihood:

$$\hat{\theta}(x) = \arg\max_{\theta} \sum_{i=1}^{n} w_i(x) \ell_{Z_i}(\theta),$$

where Z_i are the conditional exceedances.

– Extremal gradient boosting (GBEX): The weights $w_i(x)$ are obtained through gradient boosting.

– Extremal random forest (ERF): The weights $w_i(x)$ are obtained through a generalized random forest Athey, Tibshirani & Wager [2019].

Extreme quantile regression

Two methods to estimate the GPD parameters \(\hat{\theta}(x) = (\hat{\sigma}(x), \hat{\gamma}(x)) \), both maximize a localized likelihood:

\[
\hat{\theta}(x) = \arg \max_{\theta} \sum_{i=1}^{n} w_i(x) \ell_Z(i, \theta),
\]

where \(Z_i \) are the conditional exceedances.

- **Extremal gradient boosting (GBEX):** The weights \(w_i(x) \) are obtained through gradient boosting.

 https://arxiv.org/abs/2103.00808
Extreme quantile regression

Two methods to estimate the GPD parameters $\hat{\theta}(x) = (\hat{\sigma}(x), \hat{\gamma}(x))$, both maximize a localized likelihood:

$$\hat{\theta}(x) = \arg\max_{\theta} \sum_{i=1}^{n} w_i(x) \ell_{Z_i}(\theta),$$

where Z_i are the conditional exceedances.

- **Extremal gradient boosting (GBEX):** The weights $w_i(x)$ are obtained through gradient boosting.

- **Extremal random forest (ERF):** The weights $w_i(x)$ are obtained through a generalized random forest Athey, Tibshirani & Wager [2019].

Extreme quantile regression

Scale shift example with Student’s t-distribution (dof=4) for Y; $n = 2000$.
Simulation setup

Setup from [Athey, Tibshirani & Wager, 2019]:

- Different dimensions d and sample size $n = 2000$.
- $X = (X_1, \ldots, X_d)$ uniform distributed on $[-1, 1]^d$.
- Y follows a Student’s t-distribution with $\text{dof} = 4$ and scale
 \[\text{scale}(x) = 1 + \mathbb{I}(x_1 > 0), \]
 that is $\gamma(x) \equiv 1/4$ and $\sigma(x) = \sigma(\tau_0)(1 + \mathbb{I}(x_1 > 0))$.

Simulation setup

Setup from [Athey, Tibshirani & Wager, 2019]:

- Different dimensions d and sample size $n = 2000$.
- $X = (X_1, \ldots, X_d)$ uniform distributed on $[-1, 1]^d$.
- Y follows a Student’s t-distribution with $\text{dof} = 4$ and scale
 \[
 \text{scale}(x) = 1 + \mathbb{1}(x_1 > 0),
 \]
 that is $\gamma(x) \equiv 1/4$ and $\sigma(x) = \sigma(\tau_0)(1 + \mathbb{1}(x_1 > 0))$.
- Intermediate threshold $\tau_0 = 0.8$ and extreme probability levels of interest $\tau = 0.99, 0.995, 0.999$ and 0.9995.

Evaluation metric is the integrated squared error (ISE) for level τ

\[
\text{ISE} = \int_{-1}^{1} (\hat{Q}_x(\tau) - Q_x(\tau))^2 \, dx.
\]

Repeat experiment many times and compute the average of the ISE:

\[
\text{MISE} = \mathbb{E}(\text{ISE}).
\]
Simulation setup

Setup from [Athey, Tibshirani & Wager, 2019]:

- Different dimensions d and sample size $n = 2000$.
- $X = (X_1, \ldots, X_d)$ uniform distributed on $[-1, 1]^d$.
- Y follows a Student’s t-distribution with dof = 4 and scale

$$\text{scale}(x) = 1 + \mathbb{I}(x_1 > 0),$$

that is $\gamma(x) \equiv 1/4$ and $\sigma(x) = \sigma(\tau_0)(1 + \mathbb{I}(x_1 > 0))$.
- Intermediate threshold $\tau_0 = 0.8$ and extreme probability levels of interest $\tau = 0.99, 0.995, 0.999$ and 0.9995.
- Evaluation metric is the integrated squared error (ISE) for level τ

$$\text{ISE} = \int_{[-1,1]^d} \left(\hat{Q}_x(\tau) - Q_x(\tau) \right)^2 \, dx.$$

- Repeat experiment many times and compute the average of the ISE:

$$\text{MISE} = \mathbb{E}(\text{ISE}).$$
Results

\[p = 10 \]

\[\tau \]

\[\text{RMISE} \]

Methods:
- ERF
- GRF
- Meinshausen
- Unconditional GPD
- Extreme GAM
- Taillardat QRF
- GBEX
Results

\[\tau = 0.9995 \]

Methods:
- ERF
- GRF
- Meinshausen
- Unconditional GPD
- Extreme GAM
- Taillardat QRF
- GBEX

RMISE

\[\tau = 0.9995 \]

10 20 30

p

RMISE

\[\tau = 0.9995 \]

10 20 30

p
GBEX: variable importance
Data

- Consider ensembles of numerical weather predictions for precipitation forecasts from the European Centre for Medium-Range Weather Forecasts.
- We have $M = 51$ ensembles and consider a lead time of 36 hours.
- Statistical post-processing is a second step to correct these forecasts for systematic biases and over- or underdispersion.
Precipitation forecasts and statistical post-processing

Data

- Consider ensembles of numerical weather predictions for precipitation forecasts from the European Centre for Medium-Range Weather Forecasts.
- We have $M = 51$ ensembles and consider a lead time of 36 hours.
- Statistical post-processing is a second step to correct these forecasts for systematic biases and over- or underdispersion.
- We have 9 years of daily data at 7 locations in the Netherlands.
Precipitation forecasts and statistical post-processing

Data

- Consider ensembles of numerical weather predictions for precipitation forecasts from the European Centre for Medium-Range Weather Forecasts.
- We have $M = 51$ ensembles and consider a lead time of 36 hours.
- **Statistical post-processing** is a second step to correct these forecasts for systematic biases and over- or underdispersion.
- We have 9 years of daily data at 7 locations in the Netherlands.
- We apply our gbex at each location with predictors from all locations:

 \[
 X_1, \ldots, X_7 = \text{ensemble mean from all locations} \\
 X_8, \ldots, X_{14} = \text{ensemble st. dev. from all locations} \\
 X_{15}, \ldots, X_{21} = \text{ensemble upper order statistics} \\
 X_{22} = \sin\left(\frac{2\pi \text{day}}{365}\right) \\
 X_{23} = \cos\left(\frac{2\pi \text{day}}{365}\right)
 \]
Partial dependence plots

Station name
- De Bilt
- De Kooy
- Eelde
- Maastricht
- Schiphol
- Twenthe
- Vlissingen

Day of the year

Ensemble standard deviation
evtGAN: combining EVT and GANs
Climate model data

- We use 2000 years of large ensemble simulations with the EC-Earth global climate model (v2.3, Hazeleger et al., 2012).
- Present-day climate conditions, stationary in time; see van der Wiel et al. (2019) for details.
- Data at $d = 18 \times 22$ grid points over western Europe.
- We consider annual maxima of precipitation and temperature, giving us $n = 2000$ observations of a random vector $Z = (Z_1, \ldots, Z_d)$.

Goal: Realistic simulations of Z for stress testing and extreme event simulation. Here we use $n_{\text{train}} = 50$ years for training, and $n_{\text{test}} = 1950$ for evaluation.
Climate model data

- We use 2000 years of large ensemble simulations with the EC-Earth global climate model (v2.3, Hazeleger et al., 2012).
- Present-day climate conditions, stationary in time; see van der Wiel et al. (2019) for details.
- Data at $d = 18 \times 22$ grid points over western Europe.
- We consider annual maxima of precipitation and temperature, giving us $n = 2000$ observations of a random vector $Z = (Z_1, \ldots, Z_d)$.

Goal: Realistic simulations of Z for stress testing and extreme event simulation.
Climate model data

- We use 2000 years of large ensemble simulations with the EC-Earth global climate model (v2.3, Hazeleger et al., 2012).
- Present-day climate conditions, stationary in time; see van der Wiel et al. (2019) for details.
- Data at \(d = 18 \times 22 \) grid points over western Europe.
- We consider annual maxima of precipitation and temperature, giving us \(n = 2000 \) observations of a random vector \(Z = (Z_1, \ldots, Z_d) \).

Goal: Realistic simulations of \(Z \) for stress testing and extreme event simulation.
Here we use \(n_{\text{train}} = 50 \) years for training, and \(n_{\text{test}} = 1950 \) for evaluation.
Figure 1: GEV parameters for temperature (a-c) and precipitation (d-f): mean parameter μ (left), scale parameter σ (center) and shape parameter ξ (right).
Two approaches

Classical EVT approach

- Spatial extreme value theory provides statistical models for Z, e.g., a spatial max-stable model [Davison and Gholamrezaee, 2012].
- If the region is very large and heterogeneous, such models may not be flexible enough, because of:
 - spatial non-stationarities;
 - asymptotic independence between some stations;
 - etc.
Two approaches

Classical EVT approach

- Spatial extreme value theory provides statistical models for Z, e.g., a spatial max-stable model [Davison and Gholamrezaee, 2012].
- If the region is very large and heterogeneous, such models may not be flexible enough, because of:
 - spatial non-stationarities;
 - asymptotic independence between some stations;
 - etc.

Our ML approach

- Generative Adversarial Networks (GANs) [Goodfellow et al., 2014] are a flexible way of learning and sampling from a multivariate distribution Z.
- They are usually used to sample from image data using convolutional neural networks.
- We can treat our spatial climatological data Z as an image.
GAN architecture: generator and discriminator

Gaussian Noise z \(100 \times 1\) → Output $G(z)$

Generator:
- 100 × 1 Gaussian Noise z
- Fully Connected (FC) layer
- Reshape + leaky ReLU (lrelu) + drop + Batch Normalization (BN)
- Deconvolution layers (Deconv1, Deconv2, Deconv3) with:
 - $F = 3 \times 3$ $S = 1 \times 1$
 - $F = 3 \times 4$ $S = 1 \times 1$
 - $F = 4 \times 6$ $S = 2 \times 2$
- Output

Discriminator:
- Input
- Fully Connected (FC) layer
- Convolution layers (Conv1, Conv2) with:
 - $F = 3 \times 3$ $S = 1 \times 1$
- Output $D(x)$
GAN architecture: generator and discriminator

Gaussian Noise $z_{100 \times 1}$

Output $G(z)$

FC

Reshape + lrelu(0.2) + drop(0.5) + BN

$7 \times 7 \times 512$

$F = 3 \times 3$

$S = 1 \times 1$

Deconv2 + lrelu(0.2) + drop(0.5) + BN

256

10

9

Deconv3

Output $G(z)$

Reshape

25600

256

1024

Deconv1 + lrelu(0.2) + drop(0.5) + BN

1024

5

5

Deconv1

Input

5

5

Conv1 + lrelu(0.2) + drop(0.5)

64

10

Conv2 + lrelu(0.2) + drop(0.5)

128

7

Conv2

7

Conv2 + lrelu(0.2) + drop(0.5) + BN

256

5

5

Conv2

Conv2 + lrelu(0.2) + drop(0.5) + BN

6400

Reshape

Output $D(x)$

FC + sigmoid
GANs for extremes

- GANs are trained on the bulk of the distribution.
- There are two main challenges concerning extremes:
 - accurate extrapolation of the marginal distributions;
 - accurate modeling of the extremal dependence structure.

"If the input noise is bounded/light-tailed, then the generator output is bounded/light-tailed" [Wiese et al., 2019].

Huster et al. (2021) and Allouche et al. (2021) develop GANs that can generate heavy-tailed output.

Bhatia et al. (2020) propose a conditional GAN for importance sampling of extreme events.

Our evtGAN is a copula approach where marginals use EVT approximations and the dependence structure is generated by the GAN.
GANs for extremes

- GANs are trained on the bulk of the distribution.
- There are two main challenges concerning extremes:
 - accurate extrapolation of the marginal distributions;
 - accurate modeling of the extremal dependence structure.
- If the input noise is bounded/light-tailed, then the generator output is bounded/light-tailed [Wiese et al., 2019].
- Huster et al. (2021) and Allouche et al. (2021) develop GANs that can generate heavy-tailed output.
- Bhatia et al. (2020) propose a conditional GAN for importance sampling of extreme events.
GANs for extremes

- GANs are trained on the bulk of the distribution.
- There are two main challenges concerning extremes:
 - accurate extrapolation of the marginal distributions;
 - accurate modeling of the extremal dependence structure.
- If the input noise is bounded/light-tailed, then the generator output is bounded/light-tailed [Wiese et al., 2019].
- Huster et al. (2021) and Allouche et al. (2021) develop GANs that can generate heavy-tailed output.
- Bhatia et al. (2020) propose a conditional GAN for importance sampling of extreme events.

Our evtGAN is copula approach where marginals use EVT approximations and dependence the structure is generated by the GAN.
The evtGAN algorithm

Input: Annual maxima \(Z_i = (Z_{i1}, \ldots, Z_{id}), \ i = 1, \ldots, n. \)
The evtGAN algorithm

Input: Annual maxima \(Z_i = (Z_{i1}, \ldots, Z_{id}), i = 1, \ldots, n. \)

1. Fit a GEV distribution \(\hat{G}_j \) to the jth marginal with parameters \((\hat{\mu}_j, \hat{\sigma}_j, \hat{\xi}_j). \)
The evtGAN algorithm

Input: Annual maxima $Z_i = (Z_{i1}, \ldots, Z_{id})$, $i = 1, \ldots, n$.

1. Fit a GEV distribution \hat{G}_j to the jth marginal with parameters $(\hat{\mu}_j, \hat{\sigma}_j, \hat{\xi}_j)$.
2. Normalize empirically to a std uniform distribution to obtain *pseudo* observations

 $$U_i = (\hat{F}_1(Z_{i1}), \ldots, \hat{F}_d(Z_{id})), \quad i = 1, \ldots, n,$$

 where \hat{F}_j is the empirical distribution function of the Z_{1j}, \ldots, Z_{nj}.
3. Train a GAN G on the normalized data U_1, \ldots, U_n.

Output: Set of new generated observations $Z^*_i = (Z^*_{i1}, \ldots, Z^*_{id})$, $i = 1, \ldots, n^*$.
The evtGAN algorithm

Input: Annual maxima $Z_i = (Z_{i1}, \ldots, Z_{id})$, $i = 1, \ldots, n$.

1. Fit a GEV distribution \hat{G}_j to the jth marginal with parameters $(\hat{\mu}_j, \hat{\sigma}_j, \hat{\xi}_j)$.
2. Normalize empirically to a std uniform distribution to obtain pseudo observations

$$U_i = (\hat{F}_1(Z_{i1}), \ldots, \hat{F}_d(Z_{id})), \quad i = 1, \ldots, n,$$

where \hat{F}_j is the empirical distribution function of the Z_{1j}, \ldots, Z_{nj}.

3. **Train a GAN** G on the normalized data U_1, \ldots, U_n.
4. Generate n^* new data points U_{1*}, \ldots, U_{n*} from G with uniform margins.
5. Normalize back to the scale of the original observations

$$Z^*_i = (\hat{G}_1^{-1}(U^*_{i1}), \ldots, \hat{G}_d^{-1}(U^*_{id})), \quad i = 1, \ldots, n^*.$$

Output: Set of new generated observations $Z^*_i = (Z^*_{i1}, \ldots, Z^*_{id})$, $i = 1, \ldots, n^*$.
Figure 2: GEV parameters for temperature (a-c) and precipitation (d-f): mean parameter μ (left), scale parameter σ (center) and shape parameter ξ (right).
Bivariate samples of temperature

Train set

Test set

evtGAN

DCGAN

Brown-Resnick

Temperature (°C)

a) b) c) d) e) f) g) h) i) j) k) l) m) n) o)
Bivariate samples of precipitation

![Bivariate samples of precipitation](image_url)
Extremal correlation plots

Train set evtGAN Brown–Resnick

Model extremal correlation

Test extremal correlation
Thank You!

References III

