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Classical regions found in the IPCC report



Motivation

Climatology

How to identify regional clusters for multi-model heavy rainfall (CMIP )?

How to see changes in spatial rainfall structures due to anthrogenic
forcings?

Statistics

How to cluster spatially regions non-parametrically, without covariate and
in compliance with EVT ?

How to compare clusters under different RCP scenarios?



Main tools

Climatology

Global numerical physically based climate model (CMIP database)



Main statistical tools

Univariate Extreme Value Theory

lim
n→∞

Pr(Mn ≤ anx + bn) = exp

{
−
[
1 + ξ

(x − µ
σ

)]−1/ξ

+

}

Gumbel (1891-1966) Weibull (1887-1979) Fréchet (1878-1973)

Multivariate

Let Mn := (Mn,1, . . . ,Mnd) with Mnj := max(Y1j , . . . ,Ynj)

P
[

Mn − bn

an
≤ x

]
= Pn (Y ≤ anx + bn)

d−→ MGEV (x), as n→∞.

see, e.g. Statistics of Extremes, Davison and Huser Annual Review of Statistics and Its Application 2015 2 :1, 203-235
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Main issues

Climatology

Global numerical models are approximations and do not capture all
scales

Heavy rainfall strongly vary in space and time and are heavy tailed

Statistics

Pareto tail parameters are difficult to estimate in a non-stationary
spatio-temporal context
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Example : zoom over south America
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Regional regional analysis

How to find grid point clusters that are “homogeneous", ie.

Y2
d
= λY1,

where Y1 and Y2 two positive continuous r.v., i.e. as F2(λx) = F1(x)
see e.g., Le Gall et al. (2021). Improved Regional Frequency Analysis of rainfall data (Hal).
Carreau et al. (2017). Partitioning into hazard subregions for regional peaks-over- threshold modeling of heavy precipitation. WRR.
Hosking and Wallis (2005). Regional frequency analysis : an approach based on L-moments. Cambridge University Press.

See also Bobbia, Dombry and Varron (2021, proportional tail) or Daouiaa, Padoan and Stupfler (2021, pooling).

Marginal behaviors : ω(GEV (µ, σ, ξ) = 3ξ−1
2ξ−1 − 1
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PAM clustering based on dependence d = 1
2E |F1 (Y1)− F2 (Y2)|

see, e.g. Saunders et al.(2020). A regionalisation approach for rainfall based on extremal dependence, Extremes.

Bador et al. (2015). Spatial clustering of summer temperature maxima from the CNRM-CM5 climate model ensembles & E-OBS over

Europe. Weather and climate extremes.



Decoupling the pb into : “marginals" versus "dependence"



Our new dissimilarity



"Old" madogram d = 1
2E |F1 (Y1)− F2 (Y2)|

New Dissimilarity

D(c) =
1
2
E
∣∣∣∣F2 (cY1)− F1

(
Y2

c

)∣∣∣∣
Recall RFA constraint : ∃λ, F2(λx) = F1(x)

Optimization step

c∗ = argmin{D(c) : c > 0}.
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New Dissimilarity

D(c) =
1
2
E
∣∣∣∣F2 (cY1)− F1

(
Y2

c

)∣∣∣∣
Inference

D̂n(c) =
1
n

n∑
i=1

∣∣∣F̂2(cY1,i)− F̂1(Y2,i/c)
∣∣∣

Convergence under smoothness copula condition

see, e.g., Multivariate nonparametric estimation of the Pickands dependence function using Bernstein polynomials. Marcon, Padoan, PN,

Muliere, Segers. Journal of Statistical Planning and Inference, 2017, 183, 1-17



An example (bi-logistic max-stable model)

F (y1, y2) = exp

{
−V

[
−1

log F1(x)
,
−1

log F2(y)

]}
& V (x , y) =

(
x−

1
α + y−

1
α

)α
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Impact of the spatial dependence



Climate multi-model error



16 climate models



Two out of 16 climate models



Merging all 16 climate models



Climate changeEvent attribution - methodological proposal

! Step 2 & 3: causal graph + monotonicity and exogeneity.



Factual world
Event attribution - methodological proposal

! Step 2 & 3: causal graph.

factual run:
«!HIST!»



Counterfactual worldEvent attribution - methodological proposal

! Step 2 & 3: causal graph.

counterfactual run
w.r.t. 

anthropogenic forcing:
«!NAT!»



Comparing the merging of all 16 climate models under climate change



Conclusions

Main messages

Fast and simple dissimilarity in compliance with Extreme Value Theory
and the RFA constraint

Provide coherent spatial clusters over a large dataset of global climate
models

Today climate produce less stable clusters compared to a counterfactual
world without anthropogenic forcings

Global models have a crude spatial resolution scales, so a small move
by the cluster can have a large impact

Future climatological work

How to regions will change with regional climate models (finer scale)

How to integrate rainfall observations in the analysis

Future statistical work

Dealing with the hidden regular variation case

How to downscale models or upscale observations to find the best
optimal scale
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Future work on difference sources of error and/or uncertainty in D&A

Natural climate internal variability

Natural forcing variations

Model uncertainty from approximating the true climate system
with numerical experiments

Observational uncertainties due to instrumental errors,
homogenization problems and mismatches between data
sources

Sampling uncertainty in space and time

Statistical modeling error by assuming a specific statistical
model, e.g., assuming a generalized extreme value distribution
for independent block maxima.

Inferential uncertainties



PAM (Partioning Around Medoid) by Kaufman and Rousseeuw


