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Motivation

Climatology

m How to identify regional clusters for multi-model heavy rainfall (CMIP ) ?

m How to see changes in spatial rainfall structures due to anthrogenic
forcings ?

Statistics

m How to cluster spatially regions non-parametrically, without covariate and
in compliance with EVT ?

m How to compare clusters under different RCP scenarios ?



Main tools

Climatology

m Global numerical physically based climate model (CMIP database)




Main statistical tools

Univariate Extreme Value Theory

lim Pr(Mn < anX + bn) = exp {— [1 +¢ (X;M)]_w}
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Gumbel (1891-1966) Weibull (1887-1979) Fréchet (1878-1973)
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Multivariate

Let Mn = (Mn’1 ey Mnd) with Mnj = max( Y1j, ey Ynj)

P[@ < x} =P" (Y <aX+by) — MGEV(x),  asn— oc.
n

see, e.g. Statistics of Extremes, Davison and Huser Annual Review of Statistics and Its Application 2015 2 :1, 203-235



Main issues

Climatology

m Global numerical models are approximations and do not capture all
scales

m Heavy rainfall strongly vary in space and time and are heavy tailed



Main issues

Climatology

m Global numerical models are approximations and do not capture all
scales

m Heavy rainfall strongly vary in space and time and are heavy tailed

Statistics

m Pareto tail parameters are difficult to estimate in a non-stationary
spatio-temporal context



Example : zoom over south America
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Example : zoom over south America
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Regional regional analysis

m How to find grid point clusters that are “homogeneous”, ie.
Y> S AYs,

where Y; and Y> two positive continuous r.v., i.e. as F2(Ax) = Fi(x)
see e.g., Le Gall et al. (2021). Improved Regional Frequency Analysis of rainfall data (Hal).
Carreau et al. (2017). Partitioning into hazard subregions for regional peaks-over- threshold modeling of heavy precipitation. WRR.
Hosking and Wallis (2005). Regional frequency analysis : an approach based on L-moments. Cambridge University Press.

See also Bobbia, Dombry and Varron (2021, proportional tail) or Daouiaa, Padoan and Stupfler (2021, pooling).
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Marginal behaviors : w(GEV(j,0,£) = 22—:] -1
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PAM clustering based on dependence d = JE|F; (Y1) — Fz(Y2)|

see, e.g. Saunders et al.(2020). A regionalisation approach for rainfall based on extremal dependence, Extremes.
Bador et al. (2015). Spatial clustering of summer temperature maxima from the CNRM-CMS5 climate model ensembles & E-OBS over

Europe. Weather and climate extremes.



Decoupling the pb into : “marginals” versus "dependence"
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Our new dissimilarity




"Old" madogram d = 1E |F; (Y1) — Fo (Y2)|
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New Dissimilarity

o= ()

Recall RFA constraint : 3\, Fo(A\x) = Fi(x)
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New Dissimilarity

o= ()
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Optimization step




New Dissimilarity

oo - ()

Inference

| \

Da(c) = ,‘;Z |Ba(eYi) = Fi(Yai/o)

=

Convergence under smoothness copula condition

o~ 1 —~
VD (©) = Dle) ~ (~(1-4 DE)? [ Blat (0)aule) )

c>0

N ac ac
Blw) = D(u) = =D, 1) = 5 B(Lu)

with ac(u) = Fy(cF{(u)) and Cov(D(w),D(v)) = Clu A v) — C(u) C(v)

see, e.g., Multivariate nonparametric estimation of the Pickands dependence function using Bernstein polynomials. Marcon, Padoan, PN,

Muliere, Segers. Journal of Statistical Planning and Inference, 2017, 183, 1-17



An example (bi-logistic max-stable model)

iog F1(x) log Fa(y)

Flnpe) = { -V | [} avin=(x#4y4)
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PAM clustering based on dependence : d = JE|F; (Y1) — Fz (Y2)|

F-madogram partition




PAM clustering based on dependence : d = JE|F; (Y1) — Fz (Y2)|

F-madogram partition

F2(cY) - Fi <ﬁ)’

PAM clustering based on D(c) = JE

c




Impact of the spatial dependence

Original data

Temporally shuffled max



Climate multi-model error




16 climate models

Models Institute Country
CanESM2 Canadian Centre for Climate Modelling and Analysis ~ Canada
CanESM5(CM6)
cCsM4 National Center for Atmospheric Research (NCAR) USA
CESMI-CAMS NSE, DOE and NCAR USA
CNRM-CM5 Centre National de Recherches Meteorologiques France
CNRM-CM6-1(CM6)
ACCESS1-3 CSIRO and Bureau of Meteorology Australia
CSIRO-MK3-6-0
IPSL-CM5A-LR Institut Pierre Simon Laplace France
IPSL-CM5A-MR
IPSL-CM6A-LR(CM6)
MIROC-ESM JAMSTEC, AOR (UoT), NIES Japan
MIROC-ESM-CHEM
MRI-CGCM3 Meteorological Research Institute Japan
MRI-ESM2-0(CM6)
NorESM1-M Norwegian Climate Centre

Norway




Two out of 16 climate models

IPSL-CM5A-LR
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Merging all 16 climate models

Counterfactual




Climate change

anthropogenic natural
forcing forcing

internal climate response model
variability variable error



Factual world

anthropogenic natural
forcing forcing
factual run:
« HIST »
internal climate response model

variability variable error



Counterfactual world

anthropogenic natural
forcing forcing
internal climate response

variability

counterfactual run
w.r.t.
anthropogenic forcing:
« NAT »



Comparing the merging of all 16 climate models under climate change

Counterfactual

Factual (2071-2100)




Conclusions
Main messages
m Fast and simple dissimilarity in compliance with Extreme Value Theory
and the RFA constraint

m Provide coherent spatial clusters over a large dataset of global climate
models

m Today climate produce less stable clusters compared to a counterfactual
world without anthropogenic forcings

m Global models have a crude spatial resolution scales, so a small move
by the cluster can have a large impact
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Future climatological work

m How to regions will change with regional climate models (finer scale)
m How to integrate rainfall observations in the analysis

Future statistical work

m Dealing with the hidden regular variation case

m How to downscale models or upscale observations to find the best
optimal scale



Future work on difference sources of error and/or uncertainty in D&A

m Natural climate internal variability
m Natural forcing variations

m Model uncertainty from approximating the true climate system
with numerical experiments

m Observational uncertainties due to instrumental errors,
homogenization problems and mismatches between data
sources

m Sampling uncertainty in space and time

m Statistical modeling error by assuming a specific statistical
model, e.g., assuming a generalized extreme value distribution
for independent block maxima.

m Inferential uncertainties




PAM (Partioning Around Medoid) by Kaufman and Rousseeuw

Thus, we explain here in details the PAM procedure. The user provides:
+ anumber of clusters k ;
+ amatrix containing all the pairwise dissimilarities, D € R

The element D ;, for (i, ) € [[l,u]]z, represents the dissimilarity between point x;
and point x;.

The aim of the algorithm is to find k medoids solution of:

"

argmin min D, (2.4)
i =L ke L] 2T mefmi=1, k)

To understand this equation more intuitively, one can see it like this: let’s assume
we have k medoids, among the n points of the data-set, at our disposal. Each non-
medoid point of the data-set is associated to (the cluster of) its closest medoid, in the

sense of the dissimilarity matrix D. This is the information contained in min  Dj,.
me{mi=1,..k}

This gives us a partition of the data-set. Then, we can define the global cost of any par-
tition, which is simply the sum of the dissimilarities (in the sense of D) between each
point and its closest medoid. We see that the partition and its global cost is only de-
termined by the choice of the k medoids. Hence, to minimize the global cost, we are
looking for the k points among the n points of the data-set that will achieve the mini-
mal coast possible.



