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> Overview of this talk

1. Wildfire risk and wildfire data

2. Bayesian spatiotemporal regression modeling

3. Statistical inference

4. Results and their discussion



> Different notions of risk

Finance, insurance: Risk = an uncertain adverse outcome (i.e., a random variable!)

Climate, environment: (IPCC, UN Sendai Disaster risk reduction framework):

Risk = Concomitance of three components over a given space-time window

(where different risk components and drivers could correspond to random variables)
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> Wildfires : one of the major global environmental risks

Annual GHG emissions (Gt CO,-eq)

40

Wildfire = uncontrolled fire of natural vegetation

First known wildfire around 400 million years ago, soon after evolution of terrestrial plants on Earth

Major sanitary, economic and ecological damages through wildfires

Substantial contribution to global greenhouse gas (GHG) emissions
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Wildfire fighting costs in the US
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> Conceptualization of risk components of wildfire

Different ways to conceptualize wildfire risk are possible.

Exposure: What is at stake and where?

* Forest and the ecosystem services it provides _ o
(Biodiversity, carbon stock, clean air, timber industry, leisure activities...)

« Measure for exposition: Surface area covered by forest

Climate-related vulnerability:

* Forest is vulnerable when exposed to high climatic stress
* Main climatic drivers: humidity, precipitation, temperature and wind

\ Their interaction in wildfire risk is complex ,

. \IéVe use the (Canadian)_Fire Weather Index (FWI) (van Wagner, 1971), applied worldwide and also in
rance

Hazard: occurrence of wildfires, especially of very large wildfires
Wildfires are triggered by human activity (accidents, negligence, arson) or natural causes (lightning)

- Which datasets are available for France?
* Weather: SAFRAN reanalysis data from Météo France at 8km resolution
 Forest and vegetation: Corine Land Cover, databases of IGN, ONF

» Wildfire occurrences: Prométhée database
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> Major goals of wildfire research

1d Type Category Covariate Estimate aa

1 Climate Precipitation (square root) =315 [—3.66,—2.65]
2 Temperature anomaly 0.09 [0.08,0.1]

3 Land Topography Altitude (av.) —1.48 [—1.64,—1.33]
4 Altitude (sd) —1.56 [—2.66,—0.46)
5 Slope (av.) 12 [0.5,1.9]

6 Urban Building cover (av.) —5.21 [-6.71,-3.7]
7 Building cover (sd) 271 [1.38,4.04]

8 Path length (av.) —0.89 [—1.64,—0.14]
9 Path length (sd) 149 [0.83,2.15]

10 Road length (av.) 245 [2,2.91]

11 Road length (sd) —1.87 [—2.45,—1.29]
12 Secondary road length (av.) —-1.28 [—1.81,—-0.76]
13 Secondary road length (sd) 2.69 [2.11,3.27]

14 Vegetation Coniferous cover (av.) 0.36 [0.17,0.55]

15 Coniferous cover (sd) 0.29 [0.04,0.54]

16 Forest cover (sd) 0.77 [0.49,1.04]

17 Moorland (sd) 0.21 [0,0.43]

18 Protected zone cover (av.) 0.14 [0.05,0.22]

19 Shrubland (sd) 0.33 [0.05,0.6]

20 Water (av. coverage) -1 [-1.21,-08]
21 Interfaces Forest cover + building cover 4.53 [2.27,6.79]

22 Forest cover + paths —2.54 [—4.06,—1.02]
23 Time Time —0.48 [—0.91,—0.05]

FWifs

Risk mapping and forecasting

Mean FWI
during fire season
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Attribution to risk drivers
+ ldentifying/quantifying contributions of risk drivers
« Different behavior for very large wildfires?

» Efficiency of wildfire management

Carte d'accés aux massifs forestiers

et espaces exposés dans les Bouches-du-Rhone
Niveaux de danger pour le Samedi 10 Juillet 2021

Carte générée le 09/07/2021 & 17:00:01
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Long-term projections: potential impacts of
« Climate change

» Land-Use Land-Cover change
» Other dynamics, e.g. related to wildfire management



> Wildfire occurrence data in Southern Frace

Prométhée database (since 1970s): position of ignition (at 2km resolution), burnt area, etc.

~12000 wildfires larger than 1ha since 1995
- Data can be viewed as a pattern of points marked with burnt areas

-> Mathematical representation as marked spatiotemporal point processes
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Latitude °N

> Map of wildfire counts

Wildfire counts on 8km SAFRAN grid of Météo France (for weather reanalysis data)

Colors indicate 6 classes of wildfire sizes
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> Map of wildfire burnt areas

Latitude °N

Wildfire burnt areas on 8km SAFRAN grid of Météo France

Colors indicate 6 classes of wildfire sizes
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Nombre de feux

> Strong seasonalities in wildfires

Strong correlation with weather drivers, especially for large wildfires

Counts
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> Areas burnt by wildfires have heavy-tailed distribution

“1% of fires do 99% of the damage”

Burnt area (as a risk metric) is a proxy for wildfire damages
(air pollution, biodiversity, timber loss, greenhouse gases...)

- Accurate modeling of extreme wildfires (with very large burnt area) is crucial
Data of extreme wildfires are scarce by definition (several hundreds for Prométhée zone)

Accurate joint modeling of moderate and extreme wildfires requires including model components

tailored to the extremes!
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> The Generalized Pareto distribution for threshold exceedances

The Generalized Pareto distribution (GPD) arises asymptotically for the positive excesses of a
random variable X ~ F. For a high threshold u, we assume that

Pr(X >x4+ulX> U) ~ 1—GPDO.’§(X) — (1 +€x/o_);1/f

with shape parameter ¢ and scale parameter o > 0

Threshold choice for burnt areas: smallest u for which the GPD is not rejected by a statistical test

- u=380 ha
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> Large wildfire occurrence as a thinning operator

Some fires cannot be quickly extinguished and exceed the severity threshold u for extreme wildfires.

- The pattern of extreme fires is a thinning of the overall pattern, with thinning probability p(s,t):

;\extreme(S, t) = p(S, t) X }\fU”(S’ t)

(Recall: intensity A(s,t) = average number of points per space-time unit around (s,t))

Full point pattern Thinning probability Extreme-event pattern

p. 13



> A spatiotemporal stochastic modeling framework

Firelihood: A modeling framework developed since 2018
- Core developments at INRAE Avignon (URFM, BioSP)

- National and international collaborators

In this talk: model version of Koh, Pimont, Dupuy, Opitz (2022+)

We jointly model the following three aspects:
» Wildfire counts for wildfires larger than 1 ha for each pixel-day (using SAFRAN pixels)
« Wildfire size (given its pixel-day of occurrence)

« Wildfires are extreme if they exceed the severity threshold u = 80 ha

p. 14



> A spatiotemporal generalized additive regression system

We use a system of four regression equations with the following response distributions:

+ Poisson distribution for the pixel-day wildfire counts:
POIS

i

N; ~ Pois(};) where logA; =
» Bernoulli distribution for the probability of occurrences becoming extreme:

1(Y; > u) ~ Bernoulli(p}*) where log(p}l/(l - p)) = uiBERN

+ Beta distribution for burnt areas of moderate-sized wildfires:
Y | (Y; <u) ~ uxBetaZ,v) where log(3;/(1—7)) = BPETA
 Generalized Pareto distribution for burnt area exceedances above the threshold:

(Y —w) | (Y = u) ~ GPD(6;,&) where logo; = nCPD

General additive structure of the linear predictors:

MiCOMP = BoCOMP + Y1 ng:OMP(Zk(Si;ti))

where
« COMP ={POIS, BERN, BETA, GPD}

. Functionsv% allow capturing nonlinear effects of predictar variables z;(s;,t;)
(e.g., of FWI, Forest Area, Spatial location, Year, Month)

p. 15



> Examples of linear predictors u

For flexible modeling, predictor components can be nonlinear and stochastic

- Random effects with multivariate Gaussian representations

Types of predictor contributions:

« Spatial fields specific to a component, such as ngIS(si)

« Spatial fields shared between components to allow for cross-correlation, such as

gPOIS-BETA( y POIS-BERN y -BERN-GPD ;)

* Nonlinear effects for Fire Weather Index (FWI), Forest Area (FA) and year (a(t))

Example: Wildfire counts
ll!_Z’OIS _ ﬁoPOIS +ng|S(si) +ﬁP%|(S)|_SBETAgPOIS_BETA(si) _Egrs()IS—BERNgI;?;S—BERN(Si) +
+8oP OIS (zpa (i t)) + g5 O1S zpyy o )i m(e) + g5 O'S (a(t)) + g5 OB (m(2)

Example: Exceedance probability of severity threshold u
M!3ERN _ B(I?ERN n gPOIS—BERN(Sl_) + BBERN—GPD

¢BERN-GPD 4

+ g4 BERN (ZFW|(Si,ti)) + ngERN (ZFA(Si:ti)) + gsBERN (a(t)) p-16



> Background: Generalized additive models

» The response distribution F depends on a parameter u through a link function
» The linear predictor 1 = u(z) can vary according to predictors z = (zy, ..., zx),

« Additive structure of the linear predictor u :

1(z) = Bo + Tice1 8k (%)

using basis representations with coefficients f to be estimated:

9@ = I0%, Brabia(ze)

Cubic spline basis for scalar z_k Finite-element basis for spatial locations z_k

p.17




> Background: Gaussian random effects and the SPDE approach

1. Our models have several thousands of coefficients g to be estimated
- We need to control the global and local variability of estimated functions and fields

2. For accurate modeling of uncertainty, we can assume a stochastic behavior of coefficients

- A priori, we assume that the vector of coefficients g follows a multivariate normal distribution:
B~nN(0,Q1)
- We use Matérn covariance functions for 1D-functions or 2D-fields

- For efficient calculations with large-dimensional 8, we need sparse precision matrices Q

Lindgren et al. (2011) obtain sparse Q for the Matérn:
« Gaussian Matérn fields are solution of a Stochastic Partial Differential Equation (SPDE)

» Solving this SPDE approximately using a finite-element basis yields sparse and explicit Q

p.18




> Background: Bayesian inference with INLA

- Gaussian random effects = Gaussian process priors for g € R™

- We also specify penalized complexity prior distributions for hyperparameters
(variances, correlation ranges, GPD shape parameter)

Bayesian estimation requires computing the posterior densities of all parameters of interest.
Example: Posterior density of a coefficient f;

w(Bily)=| | m(BOIy)ds a0

Such posterior densities have very complicated form with high-dimensional integrals
Note: Joint posterior density m(,0 | y) < (|0, y)xXm(0)
—> it is easy to compute but not useful in itself!

Laplace approximation:
» Approximate computation of integrals having general form me exp(g(B)) dp

» Idea: replace g(PB) by its second-order Taylor development
- exp g(ﬁ))is approximated by a (scaled) multivariate Gaussian density
- The approximate integral easy to calculate!

—> Astute use of Laplace approximations in INLA (Integrated Nested Laplace Approximation)

p. 19



> Model selection and validation

* We have explored different model structures:
* Our burnt-area model (BETA-BIN-GPD) vs various alternatives (log-Gaussian, gamma...)
« Models with and without shared random effects

How to choose and check the best model?

Score Model
M2 M3 M4 M5
Prediction scores, sCRPS 287 294 284 319
_ P _ p-value <5% <1% <5% <1%
especially for extremes Tndiviual fires, . —823 Brierqo0 0.0868 0.0866 0.0044 0.0967
p-value <5% 6% <1% <1%
- preference for a relatively 1- AUCa<1190 0-355?72 0-355{76 0-2)5;4 0-111%72
p-value <970 < 070 0 0
complex model M1 Dép-month, n = 75 sCRPS 362 364 362 358
p-value ™% ™% 9% 39%

M1 prediction: number of fires M1 prediction: total BA across years
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> Results: Monthly FWI effect on numbers of fires

Linear predictor

Linear predictor

Jun, COX-FWI Relationship
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« Strongly nonlinear effect
» Month-specific response
« Strongest effect in August
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2> Results: Effects of Forested Area

Effect on POIS

COX-FA Relationship
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Relatively more ,escaping“ wildfires that become very large
in dense forest cover
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Linear Predictor

> Results: Yearly effect over the study period
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Increasing trend in wildfire activity until the ,catastrophic® year 2003

Strong drop after 2003, attributed to improved wildfire prevention and fighting

Post-2012 increase in wildfire numbers (especially extreme fires) should alarm wildfire managers!
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2 Results: Shared spatial effects

Example: Spatial effect shared between fire numbers and exceedance probabilities

Contribution to fire numbers

Effect
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- Highlighted zones incur relatively frequent but non-extreme wildfires
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> Results: Decreased uncertainty with shared random effects

Sharing can reduce estimation uncertainties for components with ,weak data signal“ (e.g. extremes)
- We let the model decide if this is possible!

Example: Credible intervals for combined spatial effects in exceedance probabilities

No sharing
B0l Hhhs
0 SPDE nodf-‘-,00
With sharing: iR Sl L b R L
« More “significant” pixels (inred) 3 Il It

500
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> Application: bio-economic forest projection (climate change)

Riviére et al. — A Bioeconomic Projection of Climate-induced Wildfire Risk in the Forest Sector. Preprint.

Firelihood French Forest Sector Model
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> Concluding remarks

« Complex Bayesian spatiotemporal models jointly enable attribution, prediction and projection
* Models detect strong residual spatial-temporal trends not well explained by ,physical” predictors

« Shared random effects improve modeling of extreme wildfires by borrowing information from
moderate wildfires (where possible)

» Climate change will strongly increase vulnerability but adaptation measures can substantially
mitigate wildfire risk

Ongoing projects:
(PhD of Jorge Castel-Clavera and H2020 project FIRE-RES)

—> Better inclusion of Land-Use Land-Cover and wildfire management variables

- Construction of new wildfire-danger indices, more accurate than Canadian FWI
- Better characterization and forecasting of extreme wildfires

- Extension to other environments of other European countries
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