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Overview of this talk

1. Wildfire risk and wildfire data

2. Bayesian spatiotemporal regression modeling

3. Statistical inference 

4. Results and their discussion 
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Different notions of risk
Finance, insurance: Risk = an uncertain adverse outcome (i.e., a random variable!)

Climate, environment: (IPCC, UN Sendai Disaster risk reduction framework):
Risk = Concomitance of three components over a given space-time window

(where different risk components and drivers could correspond to random variables)
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Wildfires : one of the major global environmental risks

• First known wildfire around 400 million years ago, soon after evolution of terrestrial plants on Earth

• Major sanitary, economic and ecological damages through wildfires

• Substantial contribution to global greenhouse gas (GHG) emissions

GHG emissions Wildfire fighting costs in the US

Wildfire = uncontrolled fire of natural vegetation
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Conceptualization of risk components of wildfire
Different ways to conceptualize wildfire risk are possible. 

Exposure: What is at stake and where?
• Forest and the ecosystem services it provides

(Biodiversity, carbon stock, clean air, timber industry, leisure activities...) 
• Measure for exposition: Surface area covered by forest

Climate-related vulnerability:
• Forest is vulnerable when exposed to high climatic stress 
• Main climatic drivers: humidity, precipitation, temperature and wind

Their interaction in wildfire risk is complex

• We use the (Canadian) Fire Weather Index (FWI) (van Wagner, 1971), applied worldwide and also in 
France

Hazard: occurrence of wildfires, especially of very large wildfires
Wildfires are triggered by human activity (accidents, negligence, arson) or natural causes (lightning)

à Which datasets are available for France? 
• Weather: SAFRAN reanalysis data from Météo France at 8km resolution
• Forest and vegetation: Corine Land Cover, databases of IGN, ONF
• Wildfire occurrences: Prométhée database
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Major goals of wildfire research
Attribution to risk drivers
• Identifying/quantifying contributions of risk drivers

• Different behavior for very large wildfires?

• Efficiency of wildfire management

Long-term projections: potential impacts of 
• Climate change
• Land-Use Land-Cover change
• Other dynamics, e.g. related to wildfire management

Risk mapping and forecasting



p. 7

Wildfire occurrence data in Southern Frace

Prométhée database (since 1970s): position of ignition (at 2km resolution), burnt area, etc.

~12000 wildfires larger than 1ha since 1995 

à Data can be viewed as a pattern of points marked with burnt areas
à Mathematical representation as marked spatiotemporal point processes
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Map of wildfire counts
• Wildfire counts on 8km SAFRAN grid of Météo France (for weather reanalysis data)

• Colors indicate 6 classes of wildfire sizes
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Map of wildfire burnt areas
• Wildfire burnt areas on 8km SAFRAN grid of Météo France

• Colors indicate 6 classes of wildfire sizes
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Strong seasonalities in wildfires

Strong correlation with weather drivers, especially for large wildfires

Counts Burnt areas
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Areas burnt by wildfires have heavy-tailed distribution

• Burnt area (as a risk metric) is a proxy for wildfire damages 
(air pollution, biodiversity, timber loss, greenhouse gases…)
à Accurate modeling of extreme wildfires (with very large burnt area) is crucial

• Data of extreme wildfires are scarce by definition (several hundreds for Prométhée zone)
• Accurate joint modeling of moderate and extreme wildfires requires including model components 

tailored to the extremes!

“1% of fires do 99% of the damage” 

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4
Log(Burnt Surface)

Pr
ob

ab
ilit

y 
de

ns
ity

Histogram of logarithm of burnt area



p. 12

The Generalized Pareto distribution for threshold exceedances 

The Generalized Pareto distribution (GPD) arises asymptotically for the positive excesses of a 
random variable 𝑋 ∼ 𝐹. For a high threshold u, we assume that

Pr X > x + u 𝑋 > u ≈ 1 –GPDσ,ξ x = 1 + 𝜉𝑥/𝜎 !
"#/%

with shape parameter 𝜉 and scale parameter 𝜎 > 0

Threshold choice for burnt areas: smallest u for which the GPD is not rejected by a statistical test

à u = 80 ha
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Large wildfire occurrence as a thinning operator

Some fires cannot be quickly extinguished and exceed the severity threshold u for extreme wildfires.

à The pattern of extreme fires is a thinning of the overall pattern, with thinning probability p(s,t):

λextreme 𝑠, 𝑡 = p 𝑠, 𝑡 × λfull 𝑠, 𝑡

(Recall: intensity 𝜆 𝑠, 𝑡 = average number of points per space-time unit around (s,t))

Full point pattern Extreme-event patternThinning probability
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A spatiotemporal stochastic modeling framework

Firelihood: A modeling framework developed since 2018
à Core developments at INRAE Avignon (URFM, BioSP)

à National and international collaborators

In this talk: model version of Koh, Pimont, Dupuy, Opitz (2022+)

We jointly model the following three aspects:

• Wildfire counts for wildfires larger than 1 ha  for each pixel-day (using SAFRAN pixels)

• Wildfire size (given its pixel-day of occurrence)

• Wildfires are extreme if they exceed the severity threshold  u = 80 ha
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A spatiotemporal generalized additive regression system

We  use a system of four regression equations with the following response distributions:

• Poisson distribution for the pixel-day wildfire counts: 

𝑁! ∼ Pois λ" where   𝑙𝑜𝑔 λ! = µ!
POIS

• Bernoulli distribution for the probability of occurrences becoming extreme: 

1 𝑌! > 𝑢 ∼ Bernoulli 𝑝!# where log p"
$/ 1 − p"

$ = µ"BERN

• Beta distribution for burnt areas of moderate-sized wildfires: 

Y" ∣ Y" < u ∼ u × Beta ζ! , ν where   log ζ!/ 1 − ζ! = µ!BETA

• Generalized Pareto distribution for burnt area exceedances above the threshold: 

𝑌! − 𝑢 ∣ 𝑌! ≥ 𝑢 ∼ GPD σ! , ξ where   𝑙𝑜𝑔 σ! = µ!
GPD

General additive structure of the linear predictors:

µ!COMP = β%COMP + ∑&'() 𝑔&COMP( 𝑧& 𝑠! , 𝑡! )
where
• COMP  = { POIS, BERN, BETA, GPD}
• Functions g allow capturing nonlinear effects of predictor variables  𝑧& 𝑠! , 𝑡!(e.g., of FWI, Forest Area, Spatial location, Year, Month)
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Examples of linear predictors 𝝁
For flexible modeling, predictor components can be nonlinear and stochastic 
à Random effects with multivariate Gaussian representations

Types of predictor contributions:

• Spatial fields specific to a component, such as 𝑔!POIS 𝑠"
• Spatial fields shared between components to allow for cross-correlation, such as  

𝑔POIS−BETA 𝑠" , 𝑔POIS−BERN 𝑠" , 𝑔BERN–GPD 𝑠"
• Nonlinear effects for Fire Weather Index (FWI), Forest Area (FA) and  year (a(t))

Example: Wildfire counts

µ!
POIS = 𝛽%

POIS + 𝑔(POIS 𝑠! + 𝛽POIS−BETA𝑔POIS−BETA 𝑠! + 𝜷POIS−BERN𝒈POIS−BERN 𝒔𝒊 +
+g2

POIS zFA s", t" + 𝑔+POIS(𝑧FWI 𝑠! , 𝑡! ; 𝑚 𝑡! ) + 𝑔,POIS 𝑎 𝑡! + 𝑔-POIS 𝑚 𝑡!

Example: Exceedance probability of severity threshold u

µ"BERN = β%BERN + 𝒈POIS−BERN 𝒔𝒊 + βBERN−GPDgBERN−GPD s"

+ g1
BERN zFWI s", t" + g2

BERN zFA s", t" + g+BERN a t"
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Background: Generalized additive models
• The response distribution 𝐹 depends on a parameter 𝜇 through a link function

• The linear predictor 𝜇 = 𝜇(𝒛) can vary according to predictors 𝐳 = 𝑧#, … , 𝑧& , 

• Additive structure of the linear predictor 𝜇 :

µ 𝐳 = β' + ∑()#
* g( z(

using basis representations with coefficients 𝜷 to be estimated:

𝑔+ 𝑧+ = ∑,)#
-! β+,,𝑏+,, 𝑧+

Cubic spline basis for scalar 𝒛_𝒌 Finite-element basis for spatial locations 𝒛_𝒌
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Background: Gaussian random effects and the SPDE approach
1. Our models have several thousands of coefficients 𝛽 to be estimated  

à We need to control the global and local variability of estimated functions and fields 
2. For accurate modeling of uncertainty, we can assume a stochastic behavior of coefficients

à A priori, we assume that the vector of coefficients 𝜷 follows a multivariate normal distribution:

𝛃 ∼ 𝓝 𝟎,𝑸"𝟏

à We use Matérn covariance functions for 1D-functions or 2D-fields

à For efficient calculations with large-dimensional 𝛃, we need sparse precision matrices 𝑸

Lindgren et al. (2011) obtain sparse 𝑸 for the Matérn:
• Gaussian Matérn fields are solution of a Stochastic Partial Differential Equation (SPDE)

• Solving this SPDE approximately using a finite-element basis yields sparse and explicit 𝑸
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Background: Bayesian inference with INLA

à Gaussian random effects = Gaussian process priors for 𝜷 ∈ 𝑹𝒎

à We also specify penalized complexity prior distributions for hyperparameters
(variances, correlation ranges, GPD shape parameter)

Bayesian estimation requires computing the posterior densities of all parameters of interest.
Example: Posterior density of a coefficient 𝛽"

π βU 𝐲 = %
V
%
W#$𝟙

π 𝛃, 𝛉 𝐲 d𝜷X𝒊d𝛉

Such posterior densities have very complicated form with high-dimensional integrals
Note: Joint posterior density π 𝛃, 𝛉 𝐲 ∝ 𝝅 𝜷 𝜽, 𝒚 ×𝝅(𝜽)

à it is easy to compute but not useful in itself!

Laplace approximation:
• Approximate computation of integrals having general form ∫1" exp g 𝛃 d𝛃

• Idea: replace g 𝛃 by its second-order Taylor development
à exp g 𝜷 is approximated by  a (scaled) multivariate Gaussian density
à The approximate integral easy to calculate! 

à Astute use of Laplace approximations in INLA (Integrated Nested Laplace Approximation)
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Model selection and validation
• We have explored different model structures:

• Our burnt-area model (BETA-BIN-GPD) vs various alternatives (log-Gaussian, gamma…)
• Models with and without shared random effects

How to choose and check the best model?

Prediction scores, 

especially for extremes

à preference for a relatively 
complex model M1

Predictions vs observations

(within-sample 1995–2014, 
out-of-sample 2015–2019)

à Good performance!
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Results: Monthly FWI effect on numbers of fires
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• Strongly nonlinear effect

• Month-specific response

• Strongest effect in August
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Results: Effects of Forested Area
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Results: Yearly effect over the study period

• Increasing trend in wildfire activity until the „catastrophic“ year 2003

• Strong drop after 2003, attributed to improved wildfire prevention and fighting

• Post-2012 increase in wildfire numbers (especially extreme fires) should alarm wildfire managers!
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Results: Shared spatial effects

Example: Spatial effect shared between fire numbers and exceedance probabilities

à Highlighted zones incur relatively frequent but non-extreme wildfires
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Results: Decreased uncertainty with shared random effects
Sharing can reduce estimation uncertainties for components with „weak data signal“ (e.g. extremes)

à We let the model decide if this is possible!

Example: Credible intervals for combined spatial effects in exceedance probabilities
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Application: bio-economic forest projection (climate change)
Rivière et al. – A Bioeconomic Projection of Climate-induced Wildfire Risk in the Forest Sector. Preprint.

Projected change (–2100) for:
• Burnt areas (left)
• Harvests (middle)
• Expected revenues (right)

Uncertainty decomposition 
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Concluding remarks
• Complex Bayesian spatiotemporal models jointly enable attribution, prediction and projection
• Models detect strong residual spatial-temporal trends not well explained by „physical“ predictors
• Shared random effects improve modeling of extreme wildfires by borrowing information from 

moderate wildfires (where possible)
• Climate change will strongly increase vulnerability but adaptation measures can substantially 

mitigate wildfire risk

Ongoing projects:
(PhD of Jorge Castel-Clavera and H2020 project FIRE-RES)
à Better inclusion of Land-Use Land-Cover and wildfire management variables
à Construction of new wildfire-danger indices, more accurate than Canadian FWI 
à Better characterization and forecasting of extreme wildfires
à Extension to other environments of other European countries
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