Spatiotemporal modeling of extreme-wildfire risk

Thomas Opitz Biostatistics and Spatial Processes, INRAE Avignon (France)

WECC workshop – Weather extremes and Climate Change 19 January 2022

- 1. Wildfire risk and wildfire data
- 2. Bayesian spatiotemporal regression modeling
- 3. Statistical inference
- 4. Results and their discussion

> Different notions of risk

Finance, insurance: Risk = an uncertain adverse outcome (i.e., a random variable!)

<u>Climate, environment:</u> (IPCC, UN Sendai Disaster risk reduction framework):

Risk = Concomitance of three components over a given space-time window (where different risk components and drivers could correspond to random variables)

> Wildfires : one of the major global environmental risks

Wildfire = uncontrolled fire of natural vegetation

- First known wildfire around 400 million years ago, soon after evolution of terrestrial plants on Earth
- Major sanitary, economic and ecological damages through wildfires
- Substantial contribution to global greenhouse gas (GHG) emissions

Wildfire fighting costs in the US

Conceptualization of risk components of wildfire

Different ways to conceptualize wildfire risk are possible.

Exposure: What is at stake and where?

- Forest and the ecosystem services it provides (Biodiversity, carbon stock, clean air, timber industry, leisure activities...)
- Measure for exposition: Surface area covered by forest

Climate-related vulnerability:

- Forest is vulnerable when exposed to high climatic stress
- Main *climatic drivers:* humidity, precipitation, temperature and wind

🐧 Their interaction in wildfire risk is complex 📌

 We use the (Canadian)_Fire Weather Index (FWI) (van Wagner, 1971), applied worldwide and also in France

Hazard: occurrence of wildfires, especially of very large wildfires

Wildfires are triggered by human activity (accidents, negligence, arson) or natural causes (lightning)

→ Which datasets are available for France?

- Weather: SAFRAN reanalysis data from Météo France at 8km resolution
- Forest and vegetation: Corine Land Cover, databases of IGN, ONF
- <u>Wildfire occurrences:</u> Prométhée database

Major goals of wildfire research

Id	Туре	Category	Covariate	Estimate	CI
1	Climate		Precipitation (square root)	-3.15	[-3.66, -2.65]
2			Temperature anomaly	0.09	[0.08,0.1]
3	Land	Topography	Altitude (av.)	-1.48	[-1.64, -1.33]
4			Altitude (sd)	-1.56	[-2.66, -0.46]
5			Slope (av.)	1.2	[0.5,1.9]
6		Urban	Building cover (av.)	-5.21	[-6.71,-3.7]
7			Building cover (sd)	2.71	[1.38,4.04]
8			Path length (av.)	-0.89	[-1.64, -0.14]
9			Path length (sd)	1.49	[0.83,2.15]
10			Road length (av.)	2.45	[2,2.91]
11			Road length (sd)	-1.87	[-2.45, -1.29]
12			Secondary road length (av.)	-1.28	[-1.81,-0.76
13			Secondary road length (sd)	2.69	[2.11,3.27]
14		Vegetation	Coniferous cover (av.)	0.36	[0.17,0.55]
15			Coniferous cover (sd)	0.29	[0.04,0.54]
16			Forest cover (sd)	0.77	[0.49,1.04]
17			Moorland (sd)	0.21	[0,0.43]
18			Protected zone cover (av.)	0.14	[0.05,0.22]
19			Shrubland (sd)	0.33	[0.05,0.6]
20			Water (av. coverage)	-1	[-1.21, -0.8]
21		Interfaces	Forest cover + building cover	4.53	[2.27,6.79]
22			Forest cover + paths	-2.54	[-4.06, -1.02]
23	Time		Time	-0.48	[-0.91,-0.05]

Risk mapping and forecasting

- Identifying/quantifying contributions of risk drivers
- Different behavior for very large wildfires?
- Efficiency of wildfire management

Long-term projections: potential impacts of

- Climate change
- Land-Use Land-Cover change
- Other dynamics, e.g. related to wildfire management

> Wildfire occurrence data in Southern Frace

Prométhée database (since 1970s): position of ignition (at 2km resolution), burnt area, etc.

- ~12000 wildfires larger than 1ha since 1995
- → Data can be viewed as a *pattern of points marked with burnt areas*
- → Mathematical representation as *marked spatiotemporal point processes*

> Map of wildfire counts

• Wildfire counts on 8km SAFRAN grid of Météo France (for weather reanalysis data)

> Map of wildfire burnt areas

- Wildfire burnt areas on 8km SAFRAN grid of Météo France
- Colors indicate 6 classes of wildfire sizes

> Strong seasonalities in wildfires

Strong correlation with weather drivers, especially for large wildfires

Counts **Burnt areas** du 01/01/1995 au 31/12/2021 du 01/01/1995 au 31/12/2021 2200 120000 2000 100000 1800 1600 80000 1400 de feux (HH) 1200 Surface Nombre 1000 800 40000 600 400 20000 200 Ó post Fester Mas Julitet catentre ocore Notentre Decentre with heit getenne Octore Notenne Deserve Aller eve . m ne Classes de mois Classes de mois Indicateur : Répartition mensuelle des nombres de feux, Type de feu : Forêt, Apartir du : 01/01/1995, Indicateur : Répartition mensuelle des superficies brûlées, Type de feu : Forêt, Apartir du : 01/01/1995, jusqu'au : 31/12/2021, Toute la zone Prométhée (15 départements), de : 1.01 jusqu'au : 31/12/2021, Toute la zone Prométhée (15 départements), de : 1.01 Source des données : www.promethee.com Source des donn ées : www.promethee.com

Données calculées le

Données calculées le

p. 10

> Areas burnt by wildfires have heavy-tailed distribution

"1% of fires do 99% of the damage"

- Burnt area (as a risk metric) is a proxy for wildfire damages (air pollution, biodiversity, timber loss, greenhouse gases...)
 → Accurate modeling of extreme wildfires (with very large burnt area) is crucial
- Data of extreme wildfires are scarce by definition (several hundreds for Prométhée zone)
- Accurate joint modeling of moderate and extreme wildfires requires including model components tailored to the extremes!

> The Generalized Pareto distribution for threshold exceedances

The *Generalized Pareto distribution (GPD)* arises asymptotically for the positive excesses of a random variable $X \sim F$. For a high threshold u, we assume that

$$\Pr(X > x + u \mid X > u) \approx 1 - \operatorname{GPD}_{\sigma,\xi}(x) = (1 + \xi x / \sigma)_{+}^{-1/\xi}$$

with shape parameter ξ and scale parameter $\sigma > 0$

Threshold choice for burnt areas: smallest u for which the GPD is not rejected by a statistical test

→ u = 80 ha

p. 12

> Large wildfire occurrence as a thinning operator

Some fires cannot be quickly extinguished and exceed the severity threshold u for extreme wildfires.

 \rightarrow The pattern of extreme fires is a *thinning* of the overall pattern, with *thinning probability* p(s,t):

$$\lambda^{\text{extreme}}(s,t) = p(s,t) \times \lambda^{\text{full}}(s,t)$$

(**Recall:** intensity $\lambda(s, t)$ = average number of points per space-time unit around (s,t))

> A spatiotemporal stochastic modeling framework

Firelihood: A modeling framework developed since 2018

- → Core developments at INRAE Avignon (URFM, BioSP)
- → National and international collaborators

In this talk: model version of Koh, Pimont, Dupuy, Opitz (2022+)

We jointly model the following three aspects:

- Wildfire counts for wildfires larger than 1 ha for each pixel-day (using SAFRAN pixels)
- Wildfire size (given its pixel-day of occurrence)
- Wildfires are extreme if they exceed the *severity threshold* **u = 80 ha**

> A spatiotemporal generalized additive regression system

We use a system of four regression equations with the following response distributions:

• **Poisson distribution** for the pixel-day wildfire counts:

$$N_i \sim \text{Pois}(\lambda_i)$$
 where $\log \lambda_i = \mu_i^{\text{POIS}}$

• **Bernoulli distribution** for the probability of occurrences becoming extreme:

 $1(Y_i > u) \sim \text{Bernoulli}(p_i^u)$ where $\log(p_i^u/(1 - p_i^u)) = \mu_i^{\text{BERN}}$

• **Beta distribution** for burnt areas of moderate-sized wildfires:

 $Y_i | (Y_i < u) \sim u \times \text{Beta}(\zeta_i, v) \text{ where } \log(\zeta_i/(1 - \zeta_i)) = \mu_i^{\text{BETA}}$

• Generalized Pareto distribution for burnt area exceedances above the threshold:

$$(Y_i - u) \mid (Y_i \ge u) \sim \mathsf{GPD}(\sigma_i, \xi) \text{ where } \log \sigma_i = \mu_i^{\mathsf{GPD}}$$

General additive structure of the linear predictors:

$$\mu_i^{\text{COMP}} = \beta_0^{\text{COMP}} + \sum_{k=1}^{K} g_k^{\text{COMP}}(z_k(s_i, t_i))$$

where

- COMP = { POIS, BERN, BETA, GPD}
- Functions g allow capturing nonlinear effects of predictor variables $z_k(s_i, t_i)$ (e.g., of FWI, Forest Area, Spatial location, Year, Month)

Examples of linear predictors μ

For flexible modeling, predictor components can be **nonlinear** and **stochastic**

→ Random effects with multivariate Gaussian representations

Types of predictor contributions:

- Spatial fields specific to a component, such as $g_1^{\text{POIS}}(s_i)$
- Spatial fields shared between components to allow for cross-correlation, such as

$$g$$
POIS-BETA $(s_i), g$ POIS-BERN $(s_i), g$ BERN-GPD (s_i)

• Nonlinear effects for Fire Weather Index (FWI), Forest Area (FA) and year (a(t))

Example: Wildfire counts

 $\mu_i^{\text{POIS}} = \beta_0^{\text{POIS}} + g_1^{\text{POIS}}(s_i) + \beta^{\text{POIS}-\text{BETA}}g^{\text{POIS}-\text{BETA}}(s_i) + \beta^{\text{POIS}-\text{BERN}}g^{\text{POIS}-\text{BERN}}g^{\text{POIS}-\text{BERN}}(s_i) + g_2^{\text{POIS}}(z_{\text{FA}}(s_i, t_i)) + g_3^{\text{POIS}}(z_{\text{FWI}}(s_i, t_i); m(t_i)) + g_4^{\text{POIS}}(a(t_i)) + g_5^{\text{POIS}}(m(t_i))$

Example: Exceedance probability of severity threshold u

$$u_{i}^{\text{BERN}} = \beta_{0}^{\text{BERN}} + g^{\text{POIS-BERN}}(s_{i}) + \beta^{\text{BERN-GPD}}g^{\text{BERN-GPD}}(s_{i}) + g_{1}^{\text{BERN}}(z_{\text{FWI}}(s_{i}, t_{i})) + g_{2}^{\text{BERN}}(z_{\text{FA}}(s_{i}, t_{i})) + g_{3}^{\text{BERN}}(a(t_{i}))$$
 p. 16

Background: Generalized additive models

- The response distribution F depends on a parameter μ through a link function
- The *linear predictor* $\mu = \mu(\mathbf{z})$ can vary according to predictors $\mathbf{z} = (z_1, ..., z_K)$,
- Additive structure of the linear predictor μ :

$$\mu(\mathbf{z}) = \beta_0 + \sum_{k=1}^{K} g_k(z_k)$$

using *basis representations* with coefficients β to be estimated:

 $g_k(z_k) = \sum_{l=1}^{L_k} \beta_{k,l} b_{k,l}(z_k)$

Cubic spline basis for scalar z_k

Finite-element basis for spatial locations z_k

Background: Gaussian random effects and the SPDE approach

- 1. Our models have several thousands of coefficients β to be estimated \rightarrow We need to control the global and local variability of estimated functions and fields
- 2. For accurate modeling of **uncertainty**, we can assume a stochastic behavior of coefficients
- \rightarrow A priori, we assume that the vector of coefficients β follows a *multivariate normal distribution:*

 $eta \sim \mathcal{N}ig(0, Q^{-1}ig)$

- → We use *Matérn covariance functions* for 1D-functions or 2D-fields
- \rightarrow For efficient calculations with large-dimensional β , we need sparse precision matrices Q

Lindgren et al. (2011) obtain sparse Q for the Matérn:

- Gaussian Matérn fields are solution of a Stochastic Partial Differential Equation (SPDE)
- Solving this SPDE approximately using a finite-element basis yields sparse and explicit Q

Background: Bayesian inference with INLA

- → Gaussian random effects = Gaussian process priors for $\beta \in \mathbb{R}^m$
- → We also specify penalized complexity prior distributions for hyperparameters (variances, correlation ranges, GPD shape parameter)

Bayesian estimation requires computing the **posterior densities** of all parameters of interest. **Example:** Posterior density of a coefficient β_i

$$\pi(\beta_{i} \mid \mathbf{y}) = \int_{\Theta} \int_{R^{m-1}} \pi(\beta, \theta \mid \mathbf{y}) d\beta_{-i} d\theta$$

Such posterior densities have very complicated form with high-dimensional integrals Note: Joint posterior density $\pi(\beta, \theta \mid y) \propto \pi(\beta \mid \theta, y) \times \pi(\theta)$

 \rightarrow it is easy to compute but not useful in itself!

Laplace approximation:

- Approximate computation of integrals having general form $\int_{\mathbb{R}^m} \exp(g(\beta)) d\beta$
- Idea: replace g(β) by its second-order Taylor development
 → exp(g(β)) is approximated by a (scaled) multivariate Gaussian density
 → The approximate integral easy to calculate!

→ Astute use of Laplace approximations in INLA (Integrated Nested Laplace Approximation)

> Model selection and validation

- We have explored different model structures:
 - Our burnt-area model (BETA-BIN-GPD) vs various alternatives (log-Gaussian, gamma...)
 - Models with and without shared random effects

How to choose and check the best model?

Year

Results: Monthly FWI effect on numbers of fires

Jul, COX-FWI Relationship

Sep, COX-FWI Relationship

- Strongly nonlinear effect
- Month-specific response
- Strongest effect in August

Results: Effects of Forested Area

Relatively more wildfires in pixels with intermediate forest cover

Relatively more "escaping" wildfires that become very large in dense forest cover

Results: Yearly effect over the study period

- Increasing trend in wildfire activity until the "catastrophic" year 2003
- Strong drop after 2003, attributed to improved wildfire prevention and fighting
- Post-2012 increase in wildfire numbers (especially extreme fires) should alarm wildfire managers!

Results: Shared spatial effects

Example: Spatial effect shared between fire numbers and exceedance probabilities

Contribution to fire numbers

Contribution to exceedance probabilities

→ Highlighted zones incur relatively frequent but non-extreme wildfires

Results: Decreased uncertainty with shared random effects

Sharing can reduce estimation uncertainties for components with "weak data signal" (e.g. extremes)

 \rightarrow We let the model decide if this is possible!

Example: Credible intervals for combined spatial effects in exceedance probabilities

No sharing

With sharing:

- (Slightly) narrower CIs
- More "significant" pixels (in red)

Application: bio-economic forest projection (climate change)

Rivière et al. – A Bioeconomic Projection of Climate-induced Wildfire Risk in the Forest Sector. Preprint.

Concluding remarks

- Complex Bayesian spatiotemporal models jointly enable attribution, prediction and projection
- Models detect strong residual spatial-temporal trends not well explained by "physical" predictors
- Shared random effects improve modeling of extreme wildfires by borrowing information from moderate wildfires (where possible)
- Climate change will strongly increase vulnerability but adaptation measures can substantially mitigate wildfire risk

Ongoing projects:

(PhD of Jorge Castel-Clavera and H2020 project FIRE-RES)

- \rightarrow Better inclusion of Land-Use Land-Cover and wildfire management variables
- → Construction of new wildfire-danger indices, more accurate than Canadian FWI
- \rightarrow Better characterization and forecasting of extreme wildfires
- \rightarrow Extension to other environments of other European countries

References:

- Pimont et al. (2021). Prediction of regional wildfire activity in the probabilistic Bayesian framework of Firelihood. *Ecological applications*, e02316
- Fargeon et al. (2018). Assessing the increase in wildfire occurrence with climate change and the uncertainties associated with this projection. In 8. International conference on forest fire research.
- Opitz et al. (2020). Point-process based Bayesian modeling of space-time structures of forest fire occurrences in Mediterranean France. *Spatial Statistics*, *40*, 100429.
- Gabriel et al. (2017). Detecting and modeling multi-scale space-time structures: the case of wildfire occurrences. *Journal de la Société Française de Statistique*, *158*(3), 86-105.
- Koh et al. Spatiotemporal wildfire modeling through point processes with moderate and extreme marks. arXiv preprint arXiv:2105.08004.
- Rivière et al. A Bioeconomic Projection of Climate-induced Wildfire Risk in the Forest Sector. Preprint.